+&@_  CSCS S
\\' ' Centro Svizzero di Calcolo Scientifico E'" Z U r I Ch

Swiss National Supercomputing Centre

Advanced C++ Course

C++ infrastructure, text-based resources
CSCS



C++ infrastructure

e as most statically typed languages C++ is compiled (exluding cern's ROOT environment), but compilersare
not the only tool supporting it, we will give an overview of:

e compilers e Remote Environements
e object utils o containers (dev-containers)
e |linker o gitpod
e build tools e sanitizers/analyzers
e package managers e debugger
e Web resources e profilers
o web tools e Test frameworks
o Textual/Documentation Resources o CI

e Editors/IDEs

o remote editing

\?\o:-o CSCS 1 ETHziirich


https://root.cern/

Compilers

e there are many compilers, for example:

O

O

O

GCC
clang
MSVC

Intel compilers (oneAPlI DPC++, the older icc)

NVidia nvc++/nvcc
IBM XL compiler

&% cscs

S 4

ETH:zurich


https://gcc.gnu.org/
https://clang.llvm.org/
https://visualstudio.microsoft.com/vs/features/cplusplus/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/overview.html
https://docs.nvidia.com/hpc-sdk//index.html
https://www.ibm.com/products/xl-c-aix-compiler-power

What does a Compiler do?

e A compiler looks at a source file, and at the included header files containing the declarations of the known
functions/types and produces an object file that targets an architecture (x86_64, armé4,...) and ABI
(memory layout, alignemens, basic data types, calling convention, system calls, ...)

e An object file is normally a binary file that contains several segments of data, its main components are
symbols (labels/addresses), the TEXT (code) segment and DATA segment. It can also have debugging
information (DWARF), which can also be stored in external files.

e To inspect the files one can normally use use binutils (or llvm-) objdump, readelf, nm, Idd (and on windows
DUMPBIN.EXE).

\?\o:-o CSCS 3 ETHziirich



Linker

e An object file contains executable code, but normally is not executable, because it refers to functions
defined in other files or libraries.

e A function call needs to jump to the address of the code to execute

e the linker replaces the reference to the function with the address of its code (often relative to the PC or
some other register)

e linking can happen
o when creating the executable (static linking)
o at load time (dynamic linking)
m shared libraries might be relocated (moved to another adress), require position independent code

®» |dd can show the shared libraries loaded

\?\o:-o CSCS 4 ETHziirich



ABI - Calling convention

e stack layout
e which registers are caller and which ar callee saved

e dynamic linking

\:o:o CSCS 5 ETHziirich



Build systems

e C++isused insome very large projects with thousands of files

e creating libraries and executables manually calling the compiler is not really an option you want something
that does it for you, and

o recompiles only what is needed when you do a small change (fast incremental builds)
o does not forget to update some dependencies (is correct)
o simplifies cleanup and full builds (automatable)

e there are various options, if you work within a large project the best bet is probably to continue with what
they are using

e we present some good options

\?\o:-o CSCS 4 ETHziirich



CMake

e cmake.orgis probably the most widely used C++
build system

e cross platform system that generates build scripts
for other build tools like:

o Unix Makefiles (the default)

o Ninja ( --GNinja ), very fast build tool an
excellent choice if available (Linux, macOS,
Windows),

o XCode project files (macQOS)
o Visual Studio project files (Windows MSVC)

e specific projects might have their own CMake
macros which you are encouraged to use in the
CMakelLists.txt (Qt for example)

N A g CSCS

tutorial/CMakelLists.txt from the cmake tutorial

cmake_minimum_required(VERSION 3.10)

project(Tutorial VERSION 1.0) # set the project name and version
set (CMAKE_CXX_STANDARD 17) # specify the C++ standard

set (CMAKE_CXX_STANDARD_REQUIRED True)
add_subdirectory(MathFunctions) # add the MathFunctions library
# add the executable

add_executable(Tutorial tutorial.cxx)

# and link the library

target_link_libraries(Tutorial PUBLIC MathFunctions)

tutorial/MathFunctions/CMakelLists.txt

add_library(MathFunctions MathFunctions.cxx)

# state that anybody linking to us needs to include the current source dir
# to find MathFunctions.h, while we don't.
target_include_directories(MathFunctions

INTERFACE S{CMAKE_CURRENT_SOURCE_DIR}

)

create a build directory with
cmake -S tutorial -B tutorial_build -GNinja
build with cmake --build tutorial_build

ETH:zurich


https://cmake.org/
https://ninja-build.org/
https://developer.apple.com/xcode/
https://visualstudio.microsoft.com/
https://cmake.org/cmake/help/latest/guide/tutorial/index.html

Bazel

e bazel.build is the open source version of the blaze Example
tool used by google

e it supports several other languages beside C++ main/BUILD from bazel.build/start/cpp
e strives to be fast, correct and support multiple ,
. ] cc_library(
platforms (linux, macOS, Windows) name = "hello-greet"
srcs = ["hello-greet.cc"],
hdrs = ["hello-greet.h"],

)

cc_binary(

name = "hello-world",
srcs = ["hello-world.cc"],
deps = |

:hello-greet”,
"//1lib:hello-time",

I

build with bazel build //main:hello-world

\3\0:0 CSCS g ETHziirich


https://bazel.build/
https://bazel.build/start/cpp

Scons

e scons.org a python based build tool Example

e it supports several other languages beside C++
SConstruct see scons doc

e strives to be fast, correct and support multiple
platforms (linux, macOS, Windows)

env = Environment()
hello_lib = env.SharedLibrary('#/1lib/hello’, ['libhello.c'])
exe = env.Program('main’', ['main.c'], LIBS=hello_1ib)

env.Install('/usr/lib', hello_1lib)
env.Install('/usr/bin', exe)
env.Alias('install', '/usr/bin')
env.Alias('install', '/usr/lib")

ouild with scons

1¥,® CSCs 9 ETHzurich


https://scons.org/
https://scons.org/doc/production/HTML/scons-user.html

Don't invent your own

e In general any code you do not have to write is a win
e |ibraries can help you with code that has been used and reviewed already by others.
e One often underestimates the time needed until a code works well and solves the issue.

e try to use stdlib or existing libraries

\?\o}o CSCS 10 ETHziirich



Package Managers

e package managers can help you install the libraries you require.

o we will look at a couple of HPC or C++ package managers

\:o:o CSCS 11 ETHziirich



Spack

e spack.iois a package manager for supercomputers, Getting started installing a library (libelf), as
Linux and macOS. described in the spack documentation:

e |t makes it easy to install specific versions of

. L. . . L. . S git clone -c feature.manyFiles=true https://github.com/spack/spack.git
scientific libraries that use a specific compiler, or $ cd spack/bin
. . o . . § ./spack install libelf
architecture specific compilation flags.
e can be installed as user without root privilegies e packaging your tool/library supports git or github
e easy to package your own software with it as sources, which makes creating packages for

your tool relatively easy as described in the
packaging guide.

\:o:o CSCS 19 ETHziirich


https://spack.io/
https://spack.readthedocs.io/en/latest/
https://spack.readthedocs.io/en/latest/packaging_guide.html

Conan conanfile.txt from the conan tutorial

o .  requires]
e conan.io is an open source, decentralized C/C++ z1ib/1.2 .11
(tool_requires
package manager. crake)3 gz ] !
e itiswellintegrated with buildtools (cmake, (generators]
SCONS ) CMakeDeps
e CMakeToolchain

e itiseasy tocreate packages

and its companion CMakelLists.txt

cmake_minimum_required(VERSION 3.15)

project(compressor C)

find_package(ZLIB REQUIRED)

message("Building with CMake version: S{CMAKE_VERSION}")
add_executable(S{PROJECT_NAME} src/main.c)
target_link_libraries(S{PROJECT_NAME} ZLIB::ZLIB)

cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake \
-DCMAKE_BUILD_TYPE=Release

1¥,® CSCs 13 ETHzurich


file:///home/runner/work/cpp-course-2023/cpp-course-2023/01_02_infrastructure_resources/infrastructure_resources.md
https://docs.conan.io/2/tutorial/creating_packages.html
https://docs.conan.io/2/tutorial.html

Vcpkg

e vcpkeg.iois a free C/C++ package manager for
acquiring and managing libraries

git clone https://github.com/Microsoft/vcpkg.git

e Maintained by the Microsoft C++ team and open Make sure you are in the directory you want the tool
source contributors. installed to before doing this.

./vcpkg/bootstrap-vcpkg.sh

Install libraries for your project

vepkg install [packages to install]

Using vcpkg with CMake

cmake -B [build directory] -S . \
-DCMAKE_TOOLCHAIN_FILE=[path to vcpkg]/scripts/buildsystems/vcpkg.cmake

\:\0‘0 CSCS 14

ETH:zurich


https://vcpkg.io/en/

Web Resources

e godbolt.org (Compiler Explorer)

o many different compilers

o nicely annotated assembly output

o supports several popular libraries (ranges, {fmt}, ...)

o code round-trip between Compiler Explorer, C++ Insights and Quick Bench possible
o we will use it quite a bit

e quick-bench.com a site to easily a quickly benchmark C++ code (and inspect disassembly)

e cppinsights.io lets you see the C++ code that clangs generates for lambdas, range for-loops, structured
bindings,...

o gcc-explorer.com makes error logs clickable, openening an IDE

e build-bench.com compare the build time of code snippets with various compilers

e www.onlinegdb.com lets you debug a program using gdb

\?\o:-o CSCS 15 ETHziirich


https://godbolt.org/
https://quick-bench.com/
https://cppinsights.io/
https://gcc-explorer.com/
https://build-bench.com/
https://www.onlinegdb.com/

Textual/Documentation Resources

e The isocpp.org site is main entry point for the C++ standard and related things (news, articles, blogs,...)

o The C++ Core Guidelines are a set of tried-and-true guidelines, rules, and best practices about coding in
C++

e C++ reference covers the language and standard library

e cplusplus.com has tutorials articles

e hackingcpp.com a good collection of various C++ learning resources

o with an excellent Tools Ecosystem Overview.

\?\o:-o CSCS 16 ETHziirich


https://isocpp.org/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://cppreference.com/
https://cplusplus.com/
https://hackingcpp.com/
https://hackingcpp.com/cpp/tools/ecosystem.html

Editors and IDEs

e C++ needs to be written, there are various editors that can be used, from the classic vim/neovim, emacs
and micro to Kate, Geany QtCreator and Visual Studio Code.

e to help editing, completion, go to definition, find all references,... can be very useful.

e They can be provided by a Language Server. As long as you use an editor that supports the Language
Server Protocol it you can have good support in it.

e clangd provides excellent support for C++ in an editor independent way.

cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=1; ln -s ~/myproject/compile_commands.json ~/myproject-
© build/

enables good completion with cmake, you can use bear for the other build tools
o ccls is an alternative language server
e Enabling clangd in your editor

o vim: YouCompleteMe or LanguageClient-neovim

o nvim: coc.nvim and coc-clangd or LanguageClient-neovim

o emacs eglot or Isp-mode

e If you have no preferred Editor Visual Studio Code is flexible editor with good support.

\?\o}o CSCS 17 ETHziirich


https://www.vim.org/
https://neovim.io/
https://www.gnu.org/software/emacs/
https://github.com/zyedidia/micro
https://kate-editor.org/
https://www.geany.org/
https://github.com/qt-creator/qt-creator
https://code.visualstudio.com/
https://microsoft.github.io/language-server-protocol/
https://clangd.llvm.org/
https://github.com/rizsotto/Bear
https://github.com/MaskRay/ccls
https://ycm-core.github.io/YouCompleteMe/
https://github.com/autozimu/LanguageClient-neovim
https://github.com/neoclide/coc.nvim
https://github.com/clangd/coc-clangd
https://github.com/autozimu/LanguageClient-neovim
https://clangd.llvm.org/installation
https://emacs-lsp.github.io/lsp-mode/tutorials/CPP-guide/
https://code.visualstudio.com/

Remote editing

e Several editors can access code on a remote machine from the editor running on your local machine via
ssh, and give you a mostly native experience.

e Visual Studio Code Remote development extension has

o Remote - SSH - Connect to any location by opening folders on a remote machine/VM using SSH.

o Dev Containers - Work with a separate toolchain or container-based application inside (or mounted
into) a container.

o WSL - Get a Linux-powered development experience in the Windows Subsystem for Linux.
o Remote - Tunnels - Connect to a remote machine via a secure tunnel, without configuring SSH.
e Gitlab Web IDE and github.dev provides vscode based editing in the Webbrowser

\?\o:-o CSCS 18 ETHziirich


https://code.visualstudio.com/docs/remote/remote-overview
https://docs.gitlab.com/ee/user/project/web_ide/
https://github.dev/

Remote containers

e Setting up the whole environment might take time an effort, using a Container can simplify it, providing a
reporoducible environment with all the tools.

DevContainerscontainers.dev is a specifications for containers that are developed to be used to

complile/work on code.

ne code is on the local machine and gets mounted in the DevContainer

ne container contains all the tools to compile and run/debug the code

ne Visual Studio Code extension can support their use

¥% cscs 19

S 4

ETH:zurich


https://containers.dev/

Remote containers

e As further step aways from your local machine containers can be run remotely, and provide an remote
environment. Some commercial services do exactly that

e gitpod.io keeps both the code and the container to compile/run/debug it running in the cloud

e codespaces is a similar service provided by github

\?\o:-o CSCS 20 ETHziirich


https://www.gitpod.io/
https://github.com/features/codespaces

Code Formatters

e Well and consistently formatted code makes the code easier to read, which is important, but manually
formatting the code can take time, and it is difficult for many developers to be all consistent with each
other. A code formatter and maybe a pre-commit hook can take care of that

e clang format (of llvm/clang) can be customized by a .clang-format file that you can add to your repository
(you can generate it with the online clang-format-configurator), and git clang-format reformats the
changes you have staged, so that you can review them
part of the llvm/clang project

e other options:
o Artistic Style

o Uncrustify

\?\o:-o CSCS 21 ETHziirich


https://clang.llvm.org/docs/ClangFormat.html
https://zed0.co.uk/clang-format-configurator/
http://astyle.sourceforge.net/
https://github.com/uncrustify/uncrustify

Git

e you should always use some version control software

e git is the de-facto industry standard for version control
o |ittle reason not to use it, we assume you do

e seta .gitignore

e commit hooks for example in a .githooks directory and then explain how to activate them (
git config --local core.hooksPath .githooks/ )

\3\010 CSCS 9 ETHziirich


https://git-scm.com/

Ci

e you shoudl always try to have automatic tests, indeed you should try to use Test Driven Development
(TDD).

e automatic test on each commit (Cl) help making sure that the project stays working, and
failure/regressions are catched quickly

e both gitlab and github let you set up pipelines that ensure that

\?\o}o CSCS 93 ETHziirich



Sanitizers

e Sanitizers add extra checks to the compiled code e ASAN (Address Sanitizer),

e this is normally a small overhead with respect to g++ -fsanitize=address
the default execution clang++ -fsanitize=address

cl.exe /fsanitize=address

e arun of the tests with sanitizers enabled is an
excellent Cl action e UBSAN (Undefined Behavior Sanitizer)

g++ -fsanitize=undefined
clang++ -fsanitize=undefined

e with cmake consider using ECMEnableSanitizers
(documentation or sanitizer-cmake

o | eakSanitizer
g++ -fsanitize=leak
clang++ -fsanitize=leak

e ThreadSanitizer
g++ -fsanitize=thread
clang++ -fsanitize=thread

\:o} CSCS o4 ETHziirich


https://github.com/KDE/extra-cmake-modules/blob/master/modules/ECMEnableSanitizers.cmake
https://api.kde.org/ecm/module/ECMEnableSanitizers.html
https://github.com/arsenm/sanitizers-cmake
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html

Analyzers

e Static analyzers might find potential issues, this can be useful, but soethime you have quite a bit of noise
(false positives), making it more costly for large codebases
*Clang-Tidy
clang-based linter tool, part of the extra clang tools
diagnoses programming errors, style violations, interface misuse

valgrind
e SonarSource code analyzer with an opensource core with commercial extensions

e snyk.io opensource code analyzers with commercial suite to find vulnerabilities

\?\o:-o CSCS ot ETHziirich


http://clang.llvm.org/extra/clang-tidy.html
https://www.sonarsource.com/
https://snyk.io/lp/snyk-open-source-scanner-c-cpp/

Profiling

e Profile the real thing (unoptimized code might behave very differently)

e gprofng

O

O

O

O

modern non intrusive sampling based
supports optimized multithreaded applications
HTML report (if wanted)

simular to the older perf

e Valgrind (cachegrind, callgrind)

O

O

O

Simulates the processor, 100s times slower, but exact behaviour of optimized code
--tool=memcheck leak, invalid read/write detection
--tool=callgrind runtime profiling

--tool=cachegrind cache profiling

--tool=massif heap memory profiling

integration into various IDEs or visual tools, for example {g/k}cachegrind

¥% cscs 56

S 4

ETH:zurich


https://sourceware.org/binutils/docs/gprofng.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://valgrind.org/
https://kcachegrind.github.io/html/Home.html

Profiling 2

e VTune Profiler commercial, but free usage available

e Apple Instruments various tools, quite nice, also non intrusive sampling based methods

e Coz - Causal Profiler

o unique approach to profiling

o creates causal profile: "optimizing function X will have effect Y"

o profile is based on performance experiments

o program is partitioned into parts based on progress points (that are set in source code)

o no additional instrumentation of source code required

\?\o:-o CSCS 7 ETHziirich


https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://help.apple.com/instruments/mac/current
https://github.com/plasma-umass/coz

Single Process Debuggers

e debuggers let one inspect a running program and find issues
o GDB the GNU debugger

o [Ildb the LLVM project's debugger
o rr records program state over time
= replay & debug same recording many times
m reverse execution
= chaos mode for catching intermittent bugs
e frontends
o DDD official GNU debugger frontend
o seer Qt based debugger frontend

e Several IDEs integrate the debugger, for example QtCreator, Visual Studio Code

\?\o:-o CSCS )8 ETHziirich


https://www.gnu.org/software/gdb
https://lldb.llvm.org/
https://rr-project.org/
https://www.gnu.org/software/ddd
https://github.com/epasveer/seer
https://www.qt.io/product/development-tools
https://code.visualstudio.com/

Parallel debuggers (mpi,...)

Debugging parallel applications is not easy, often one resorts to a printf approach.
There are commercial debuggers that support it, look at what is supported where you run.

e Linaro Forge (DDT) (which used to be Allinea DDT, and then Amd forge) is a parallel debugger that is also
available at CSCS

e totalview is another parallel commercial parallel debugger

\?\o:-o CSCS 26 ETHziirich


https://www.linaroforge.com/linaroDdt/
https://user.cscs.ch/computing/analysis/ddt/
https://totalview.io/

Testing frameworks

e Tests and Cl are important, they let you modify and refactor the code more agressivly because you know
that it still works

e Indeed in the TDD (Test Driven Development) you start by writing the tests even before you write the
code

e There are various frameworks that help you write tests, but the crucial thing are the tests, not the
framework

e |f you work in a project that already uses a framework, consider using it (will probably integrate already
well with ClI)

e Here we present some good options if you start from scratch

\?\o:-o CSCS 30 ETHziirich



Catch2

e allows for well-structured, self-documenting tests

e relatively easy to set up

e very good and concise documentation

e data generator helpers

e set of predefined matchers for comparing values
e microbenchmarking tools

e logging

e Boost Software License 1.0
Intro/Tutorial Manual Tutorial

N A g CSCS

31

#include <catch2/catch_test_macros.hpp>

unsigned int Factorial( unsigned int number ) {
return number <= 1 ? number : Factorial(number-1)*number;

}

TEST_CASE( "Factorials are computed", "[factorial]" ) {

REQUIRE( Factorial(1) == 1 );
REQUIRE( Factorial(2) == 2 );
REQUIRE( Factorial(3) == 6 );
REQUIRE( Factorial(10) == 36288600 );

ETH:zurich



https://github.com/catchorg/Catch2
https://github.com/catchorg/Catch2/blob/devel/docs/tutorial.md#top
https://github.com/catchorg/Catch2/blob/devel/docs/Readme.md#top
https://github.com/catchorg/Catch2/blob/devel/docs/tutorial.md

Other Good Test Frameworks

e DocTest o Google Test
o easy to set up, one header only o |ikely the most used unit test framework.
o good choice for small/quick projects o Robust, scales well, a solid choice
o approach allows for well-structured, self- e Boost Test

documenting tests o Well structured basic unit test, cosider it if you

o very good and concise documentation use the Boost library

o BSL-1.0
+Tutorial Manual Quick Example

\?\o:-o CSCS 39 ETHziirich


https://github.com/onqtam/doctest/blob/master/doc/markdown/tutorial.md
https://github.com/onqtam/doctest/blob/master/doc/markdown/tutorial.md
http://bit.ly/doctest-docs
https://hackingcpp.com/cpp/diagnostics.html#doctest
https://github.com/google/googletest
https://www.jetbrains.com/lp/devecosystem-2022/cpp/#Which-unit-testing-frameworks-do-you-regularly-use
https://github.com/boostorg/test

Mocking

e Mocking is useful when you have an interface, either with virtual methods or via template argument
(formalized with Concepts or not), and you want to test the code that uses it.

e from Pragmatic Unit Testing
e When the real object
o produces unpredictable results, like a stock-market quote feed, or has nondeterministic behavior.
o is difficult to set up, or is slow.
o has hard to trigger behavior. For example, a network error or out-of-memory condition
o The real object has or is a user interface.
o does not yet exist
e When the test needs to ask the real object about how it was used.
e Dangers:
o js stateful and pushes toward stateful APls (especially if you write test before implementing)

o a stateless APl is normally better if possible

\?\o:-o CSCS 33 ETHziirich



Mocking libraries

e You can create a mock object that returns a predetermined response for given calls, and checks that given
methods are called (potentially checking the sequence and the arguments of the call).

e Mocking libraries as the following help you doing that

e trompeloeil

o A thread-safe header-only mocking framework for C++11/14
o a good choice for example with catch2
o Boost Software License 1.0

e Google Mock

o a stable well rounded mocking library.

o now part of google test, obvious choice if you use google test.

\?\o:-o CSCS 24 ETHziirich


https://github.com/rollbear/trompeloeil
https://github.com/google/googletest/tree/main/googlemock

Conclusions

e C++ has arich ecosystem, take advantage of it

e Use compilers that support the newer standard versions and more checks

e Make sure that building is possible with a single commands and iteration is quick

e consider using package managers to install your dependencies and to share your libraries

e Consult web resources to stay up to date, lookup references and quickly check code snippets
e Use an Editor/IDE that understands C++ and helps you understand and refactor your code

e use a code formatter to keep your code consistently and nicely formatted and easy to read without
spending too much time on it

e write tests, they help you to be confident that your code works, and that changes do not break your
program

e set up Cl to continuosly and automatically
o build and run tests
o also with sanitizers, analyzers and benchmarks

e when required use profilers to find places to optimize and debugger to identify bugs

\?\o:-o CSCS 35 ETHziirich



Exercises

e set up and editor with clangd, and make sure that the compile_commands.json fileis visible to it

e add the dependencies of your project with a package manager, so that you can install all of them with a
single command

e If your projectis alibrary try to make it available via a package manager
e add some tests (using catch2 , or another library)
e add Cl to your project if it doesn't have it yet

o add a build stage

o execute the tests

o do the same also with sanitizers

e build an optimized (but with debug info) single processor application (but possibly multithreaded) and
profile it with

o gprofng / instruments (realtime sampling)
o valgrind and q/kcachegrind (exact, but much slower)

o coz (~realtime, requires some modifications to set the range unit, you can use sample applications)

\go CSCS 24 ETHziirich



