
Advanced C++ Course
C++ infrastructure, text-based resources

CSCS

C++ infrastructure

as most statically typed languages C++ is compiled (exluding cern's ROOT environment), but compilersare
not the only tool supporting it, we will give an overview of:

compilers

object utils

linker

build tools

package managers

Web resources

web tools

Textual/Documentation Resources

Editors/IDEs

remote editing

Remote Environements

containers (dev-containers)

gitpod

sanitizers/analyzers

debugger

profilers

Test frameworks

CI

1

https://root.cern/

Compilers

there are many compilers, for example:

GCC

clang

MSVC

Intel compilers (oneAPI DPC++, the older icc)

NVidia nvc++/nvcc

IBM XL compiler

2

https://gcc.gnu.org/
https://clang.llvm.org/
https://visualstudio.microsoft.com/vs/features/cplusplus/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/overview.html
https://docs.nvidia.com/hpc-sdk//index.html
https://www.ibm.com/products/xl-c-aix-compiler-power

What does a Compiler do?

A compiler looks at a source file, and at the included header files containing the declarations of the known
functions/types and produces an object file that targets an architecture (x86_64, arm64,...) and ABI
(memory layout, alignemens, basic data types, calling convention, system calls, ...)

An object file is normally a binary file that contains several segments of data, its main components are
symbols (labels/addresses), the TEXT (code) segment and DATA segment. It can also have debugging
information (DWARF), which can also be stored in external files.

To inspect the files one can normally use use binutils (or llvm-) objdump, readelf, nm, ldd (and on windows
DUMPBIN.EXE).

3

Linker

An object file contains executable code, but normally is not executable, because it refers to functions
defined in other files or libraries.

A function call needs to jump to the address of the code to execute

the linker replaces the reference to the function with the address of its code (often relative to the PC or
some other register)

linking can happen

when creating the executable (static linking)

at load time (dynamic linking)

shared libraries might be relocated (moved to another adress), require position independent code

ldd can show the shared libraries loaded

4

ABI - Calling convention

stack layout

which registers are caller and which ar callee saved

dynamic linking

5

Build systems

C++ is used in some very large projects with thousands of files

creating libraries and executables manually calling the compiler is not really an option you want something
that does it for you, and

recompiles only what is needed when you do a small change (fast incremental builds)

does not forget to update some dependencies (is correct)

simplifies cleanup and full builds (automatable)

there are various options, if you work within a large project the best bet is probably to continue with what
they are using

we present some good options

6

CMake

cmake.org is probably the most widely used C++
build system

cross platform system that generates build scripts
for other build tools like:

Unix Makefiles (the default)

Ninja (--GNinja) , very fast build tool an
excellent choice if available (Linux, macOS,
Windows),

XCode project files (macOS)

Visual Studio project files (Windows MSVC)

specific projects might have their own CMake
macros which you are encouraged to use in the
CMakeLists.txt (Qt for example)

tutorial/CMakeLists.txt from the cmake tutorial

cmake_minimum_required(VERSION 3.10)
project(Tutorial VERSION 1.0) # set the project name and version
set(CMAKE_CXX_STANDARD 17) # specify the C++ standard
set(CMAKE_CXX_STANDARD_REQUIRED True)
add_subdirectory(MathFunctions) # add the MathFunctions library
add the executable
add_executable(Tutorial tutorial.cxx)
and link the library
target_link_libraries(Tutorial PUBLIC MathFunctions)

tutorial/MathFunctions/CMakeLists.txt

add_library(MathFunctions MathFunctions.cxx)

state that anybody linking to us needs to include the current source dir
to find MathFunctions.h, while we don't.
target_include_directories(MathFunctions
 INTERFACE ${CMAKE_CURRENT_SOURCE_DIR}
)

create a build directory with
cmake -S tutorial -B tutorial_build -GNinja

build with cmake --build tutorial_build

7

https://cmake.org/
https://ninja-build.org/
https://developer.apple.com/xcode/
https://visualstudio.microsoft.com/
https://cmake.org/cmake/help/latest/guide/tutorial/index.html

Bazel

bazel.build is the open source version of the blaze
tool used by google

it supports several other languages beside C++

strives to be fast, correct and support multiple
platforms (linux, macOS, Windows)

Example

main/BUILD from bazel.build/start/cpp

cc_library(
 name = "hello-greet",
 srcs = ["hello-greet.cc"],
 hdrs = ["hello-greet.h"],
)

cc_binary(
 name = "hello-world",
 srcs = ["hello-world.cc"],
 deps = [
 ":hello-greet",
 "//lib:hello-time",
],
)

build with bazel build //main:hello-world

8

https://bazel.build/
https://bazel.build/start/cpp

Scons

scons.org a python based build tool

it supports several other languages beside C++

strives to be fast, correct and support multiple
platforms (linux, macOS, Windows)

Example

SConstruct see scons doc

env = Environment()
hello_lib = env.SharedLibrary('#/lib/hello', ['libhello.c'])
exe = env.Program('main', ['main.c'], LIBS=hello_lib)

env.Install('/usr/lib', hello_lib)
env.Install('/usr/bin', exe)
env.Alias('install', '/usr/bin')
env.Alias('install', '/usr/lib')

build with scons

9

https://scons.org/
https://scons.org/doc/production/HTML/scons-user.html

Don't invent your own

In general any code you do not have to write is a win

libraries can help you with code that has been used and reviewed already by others.

One often underestimates the time needed until a code works well and solves the issue.

try to use stdlib or existing libraries

10

Package Managers

package managers can help you install the libraries you require.

we will look at a couple of HPC or C++ package managers

11

Spack

spack.io is a package manager for supercomputers,
Linux and macOS.

It makes it easy to install specific versions of
scientific libraries that use a specific compiler, or
architecture specific compilation flags.

can be installed as user without root privilegies

easy to package your own software with it

Getting started installing a library (libelf), as
described in the spack documentation:

$ git clone -c feature.manyFiles=true https://github.com/spack/spack.git
$ cd spack/bin
$./spack install libelf

packaging your tool/library supports git or github
as sources, which makes creating packages for
your tool relatively easy as described in the
packaging guide.

12

https://spack.io/
https://spack.readthedocs.io/en/latest/
https://spack.readthedocs.io/en/latest/packaging_guide.html

Conan

conan.io is an open source, decentralized C/C++
package manager.

it is well integrated with buildtools (cmake,
scons,...)

it is easy to create packages

conanfile.txt from the conan tutorial

[requires]
zlib/1.2.11
[tool_requires]
cmake/3.22.6
[generators]
CMakeDeps
CMakeToolchain

and its companion CMakeLists.txt

cmake_minimum_required(VERSION 3.15)
project(compressor C)
find_package(ZLIB REQUIRED)
message("Building with CMake version: ${CMAKE_VERSION}")
add_executable(${PROJECT_NAME} src/main.c)
target_link_libraries(${PROJECT_NAME} ZLIB::ZLIB)

cmake .. -DCMAKE_TOOLCHAIN_FILE=conan_toolchain.cmake \
 -DCMAKE_BUILD_TYPE=Release

13

file:///home/runner/work/cpp-course-2023/cpp-course-2023/01_02_infrastructure_resources/infrastructure_resources.md
https://docs.conan.io/2/tutorial/creating_packages.html
https://docs.conan.io/2/tutorial.html

Vcpkg

vcpkg.io is a free C/C++ package manager for
acquiring and managing libraries

Maintained by the Microsoft C++ team and open
source contributors.

git clone https://github.com/Microsoft/vcpkg.git

Make sure you are in the directory you want the tool
installed to before doing this.

./vcpkg/bootstrap-vcpkg.sh

Install libraries for your project

vcpkg install [packages to install]

Using vcpkg with CMake

cmake -B [build directory] -S . \
-DCMAKE_TOOLCHAIN_FILE=[path to vcpkg]/scripts/buildsystems/vcpkg.cmake

14

https://vcpkg.io/en/

Web Resources

godbolt.org (Compiler Explorer)

many different compilers

nicely annotated assembly output

supports several popular libraries (ranges, {fmt}, …)

code round-trip between Compiler Explorer, C++ Insights and Quick Bench possible

we will use it quite a bit

quick-bench.com a site to easily a quickly benchmark C++ code (and inspect disassembly)

cppinsights.io lets you see the C++ code that clangs generates for lambdas, range for-loops, structured
bindings,...

gcc-explorer.com makes error logs clickable, openening an IDE

build-bench.com compare the build time of code snippets with various compilers

www.onlinegdb.com lets you debug a program using gdb

15

https://godbolt.org/
https://quick-bench.com/
https://cppinsights.io/
https://gcc-explorer.com/
https://build-bench.com/
https://www.onlinegdb.com/

Textual/Documentation Resources

The isocpp.org site is main entry point for the C++ standard and related things (news, articles, blogs,...)

The C++ Core Guidelines are a set of tried-and-true guidelines, rules, and best practices about coding in
C++

C++ reference covers the language and standard library

cplusplus.com has tutorials articles

hackingcpp.com a good collection of various C++ learning resources

with an excellent Tools Ecosystem Overview.

16

https://isocpp.org/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://cppreference.com/
https://cplusplus.com/
https://hackingcpp.com/
https://hackingcpp.com/cpp/tools/ecosystem.html

Editors and IDEs

C++ needs to be written, there are various editors that can be used, from the classic vim/neovim, emacs
and micro to Kate, Geany QtCreator and Visual Studio Code.

to help editing, completion, go to definition, find all references,... can be very useful.

They can be provided by a Language Server. As long as you use an editor that supports the Language
Server Protocol it you can have good support in it.

clangd provides excellent support for C++ in an editor independent way.

cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=1; ln -s ~/myproject/compile_commands.json ~/myproject-
build/

enables good completion with cmake, you can use bear for the other build tools

ccls is an alternative language server

Enabling clangd in your editor

vim: YouCompleteMe or LanguageClient-neovim

nvim: coc.nvim and coc-clangd or LanguageClient-neovim

emacs eglot or lsp-mode

If you have no preferred Editor Visual Studio Code is flexible editor with good support.

17

https://www.vim.org/
https://neovim.io/
https://www.gnu.org/software/emacs/
https://github.com/zyedidia/micro
https://kate-editor.org/
https://www.geany.org/
https://github.com/qt-creator/qt-creator
https://code.visualstudio.com/
https://microsoft.github.io/language-server-protocol/
https://clangd.llvm.org/
https://github.com/rizsotto/Bear
https://github.com/MaskRay/ccls
https://ycm-core.github.io/YouCompleteMe/
https://github.com/autozimu/LanguageClient-neovim
https://github.com/neoclide/coc.nvim
https://github.com/clangd/coc-clangd
https://github.com/autozimu/LanguageClient-neovim
https://clangd.llvm.org/installation
https://emacs-lsp.github.io/lsp-mode/tutorials/CPP-guide/
https://code.visualstudio.com/

Remote editing

Several editors can access code on a remote machine from the editor running on your local machine via
ssh, and give you a mostly native experience.

Visual Studio Code Remote development extension has

Remote - SSH - Connect to any location by opening folders on a remote machine/VM using SSH.

Dev Containers - Work with a separate toolchain or container-based application inside (or mounted
into) a container.

WSL - Get a Linux-powered development experience in the Windows Subsystem for Linux.

Remote - Tunnels - Connect to a remote machine via a secure tunnel, without configuring SSH.

Gitlab Web IDE and github.dev provides vscode based editing in the Webbrowser

18

https://code.visualstudio.com/docs/remote/remote-overview
https://docs.gitlab.com/ee/user/project/web_ide/
https://github.dev/

Remote containers

Setting up the whole environment might take time an effort, using a Container can simplify it, providing a
reporoducible environment with all the tools.

DevContainerscontainers.dev is a specifications for containers that are developed to be used to
complile/work on code.

The code is on the local machine and gets mounted in the DevContainer

The container contains all the tools to compile and run/debug the code

The Visual Studio Code extension can support their use

19

https://containers.dev/

Remote containers

As further step aways from your local machine containers can be run remotely, and provide an remote
environment. Some commercial services do exactly that

gitpod.io keeps both the code and the container to compile/run/debug it running in the cloud

codespaces is a similar service provided by github

20

https://www.gitpod.io/
https://github.com/features/codespaces

Code Formatters

Well and consistently formatted code makes the code easier to read, which is important, but manually
formatting the code can take time, and it is difficult for many developers to be all consistent with each
other. A code formatter and maybe a pre-commit hook can take care of that

clang format (of llvm/clang) can be customized by a .clang-format file that you can add to your repository
(you can generate it with the online clang-format-configurator), and git clang-format reformats the
changes you have staged, so that you can review them
part of the llvm/clang project

other options:

Artistic Style

Uncrustify

21

https://clang.llvm.org/docs/ClangFormat.html
https://zed0.co.uk/clang-format-configurator/
http://astyle.sourceforge.net/
https://github.com/uncrustify/uncrustify

Git

you should always use some version control software

git is the de-facto industry standard for version control

little reason not to use it, we assume you do

set a .gitignore

commit hooks for example in a .githooks directory and then explain how to activate them (
git config --local core.hooksPath .githooks/)

22

https://git-scm.com/

CI

you shoudl always try to have automatic tests, indeed you should try to use Test Driven Development
(TDD).

automatic test on each commit (CI) help making sure that the project stays working, and
failure/regressions are catched quickly

both gitlab and github let you set up pipelines that ensure that

23

Sanitizers

Sanitizers add extra checks to the compiled code

this is normally a small overhead with respect to
the default execution

a run of the tests with sanitizers enabled is an
excellent CI action

with cmake consider using ECMEnableSanitizers
(documentation or sanitizer-cmake

ASAN (Address Sanitizer)
g++ -fsanitize=address
clang++ -fsanitize=address
cl.exe /fsanitize=address

UBSAN (Undefined Behavior Sanitizer)
g++ -fsanitize=undefined
clang++ -fsanitize=undefined

LeakSanitizer
g++ -fsanitize=leak
clang++ -fsanitize=leak

ThreadSanitizer
g++ -fsanitize=thread
clang++ -fsanitize=thread

24

https://github.com/KDE/extra-cmake-modules/blob/master/modules/ECMEnableSanitizers.cmake
https://api.kde.org/ecm/module/ECMEnableSanitizers.html
https://github.com/arsenm/sanitizers-cmake
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html

Analyzers

Static analyzers might find potential issues, this can be useful, but soethime you have quite a bit of noise
(false positives), making it more costly for large codebases
* Clang-Tidy
clang-based linter tool, part of the extra clang tools
diagnoses programming errors, style violations, interface misuse
valgrind

SonarSource code analyzer with an opensource core with commercial extensions

snyk.io opensource code analyzers with commercial suite to find vulnerabilities

25

http://clang.llvm.org/extra/clang-tidy.html
https://www.sonarsource.com/
https://snyk.io/lp/snyk-open-source-scanner-c-cpp/

Profiling

Profile the real thing (unoptimized code might behave very differently)

gprofng

modern non intrusive sampling based

supports optimized multithreaded applications

HTML report (if wanted)

simular to the older perf

Valgrind (cachegrind, callgrind)

Simulates the processor, 100s times slower, but exact behaviour of optimized code

--tool=memcheck leak, invalid read/write detection

--tool=callgrind runtime profiling

--tool=cachegrind cache profiling

--tool=massif heap memory profiling

integration into various IDEs or visual tools, for example {q/k}cachegrind

26

https://sourceware.org/binutils/docs/gprofng.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://valgrind.org/
https://kcachegrind.github.io/html/Home.html

Profiling 2

VTune Profiler commercial, but free usage available

Apple Instruments various tools, quite nice, also non intrusive sampling based methods

Coz – Causal Profiler

unique approach to profiling

creates causal profile: "optimizing function X will have effect Y"

profile is based on performance experiments

program is partitioned into parts based on progress points (that are set in source code)

no additional instrumentation of source code required

27

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://help.apple.com/instruments/mac/current
https://github.com/plasma-umass/coz

Single Process Debuggers

debuggers let one inspect a running program and find issues

GDB the GNU debugger

lldb the LLVM project's debugger

rr records program state over time

replay & debug same recording many times

reverse execution

chaos mode for catching intermittent bugs

frontends

DDD official GNU debugger frontend

seer Qt based debugger frontend

Several IDEs integrate the debugger, for example QtCreator, Visual Studio Code

28

https://www.gnu.org/software/gdb
https://lldb.llvm.org/
https://rr-project.org/
https://www.gnu.org/software/ddd
https://github.com/epasveer/seer
https://www.qt.io/product/development-tools
https://code.visualstudio.com/

Parallel debuggers (mpi,...)

Debugging parallel applications is not easy, often one resorts to a printf approach.
There are commercial debuggers that support it, look at what is supported where you run.

Linaro Forge (DDT) (which used to be Allinea DDT, and then Amd forge) is a parallel debugger that is also
available at CSCS

totalview is another parallel commercial parallel debugger

29

https://www.linaroforge.com/linaroDdt/
https://user.cscs.ch/computing/analysis/ddt/
https://totalview.io/

Testing frameworks

Tests and CI are important, they let you modify and refactor the code more agressivly because you know
that it still works

Indeed in the TDD (Test Driven Development) you start by writing the tests even before you write the
code

There are various frameworks that help you write tests, but the crucial thing are the tests, not the
framework

If you work in a project that already uses a framework, consider using it (will probably integrate already
well with CI)

Here we present some good options if you start from scratch

30

Catch2

allows for well-structured, self-documenting tests

relatively easy to set up

very good and concise documentation

data generator helpers

set of predefined matchers for comparing values

microbenchmarking tools

logging

Boost Software License 1.0
Intro/Tutorial Manual Tutorial

#include <catch2/catch_test_macros.hpp>

unsigned int Factorial(unsigned int number) {
 return number <= 1 ? number : Factorial(number-1)*number;
}

TEST_CASE("Factorials are computed", "[factorial]") {
 REQUIRE(Factorial(1) == 1);
 REQUIRE(Factorial(2) == 2);
 REQUIRE(Factorial(3) == 6);
 REQUIRE(Factorial(10) == 3628800);
}

31

https://github.com/catchorg/Catch2
https://github.com/catchorg/Catch2/blob/devel/docs/tutorial.md#top
https://github.com/catchorg/Catch2/blob/devel/docs/Readme.md#top
https://github.com/catchorg/Catch2/blob/devel/docs/tutorial.md

Other Good Test Frameworks

DocTest

easy to set up, one header only

good choice for small/quick projects

approach allows for well-structured, self-
documenting tests

very good and concise documentation

BSL-1.0
+Tutorial Manual Quick Example

Google Test

likely the most used unit test framework.

Robust, scales well, a solid choice

Boost Test

Well structured basic unit test, cosider it if you
use the Boost library

32

https://github.com/onqtam/doctest/blob/master/doc/markdown/tutorial.md
https://github.com/onqtam/doctest/blob/master/doc/markdown/tutorial.md
http://bit.ly/doctest-docs
https://hackingcpp.com/cpp/diagnostics.html#doctest
https://github.com/google/googletest
https://www.jetbrains.com/lp/devecosystem-2022/cpp/#Which-unit-testing-frameworks-do-you-regularly-use
https://github.com/boostorg/test

Mocking

Mocking is useful when you have an interface, either with virtual methods or via template argument
(formalized with Concepts or not), and you want to test the code that uses it.

from Pragmatic Unit Testing

When the real object

produces unpredictable results, like a stock-market quote feed, or has nondeterministic behavior.

is difficult to set up, or is slow.

has hard to trigger behavior. For example, a network error or out-of-memory condition

The real object has or is a user interface.

does not yet exist

When the test needs to ask the real object about how it was used.

Dangers:

is stateful and pushes toward stateful APIs (especially if you write test before implementing)

a stateless API is normally better if possible

33

Mocking libraries

You can create a mock object that returns a predetermined response for given calls, and checks that given
methods are called (potentially checking the sequence and the arguments of the call).

Mocking libraries as the following help you doing that

trompeloeil

A thread-safe header-only mocking framework for C++11/14

a good choice for example with catch2

Boost Software License 1.0

Google Mock

a stable well rounded mocking library.

now part of google test, obvious choice if you use google test.

34

https://github.com/rollbear/trompeloeil
https://github.com/google/googletest/tree/main/googlemock

Conclusions

C++ has a rich ecosystem, take advantage of it

Use compilers that support the newer standard versions and more checks

Make sure that building is possible with a single commands and iteration is quick

consider using package managers to install your dependencies and to share your libraries

Consult web resources to stay up to date, lookup references and quickly check code snippets

Use an Editor/IDE that understands C++ and helps you understand and refactor your code

use a code formatter to keep your code consistently and nicely formatted and easy to read without
spending too much time on it

write tests, they help you to be confident that your code works, and that changes do not break your
program

set up CI to continuosly and automatically

build and run tests

also with sanitizers, analyzers and benchmarks

when required use profilers to find places to optimize and debugger to identify bugs

35

Exercises

set up and editor with clangd , and make sure that the compile_commands.json file is visible to it

add the dependencies of your project with a package manager, so that you can install all of them with a
single command

If your project is a library try to make it available via a package manager

add some tests (using catch2 , or another library)

add CI to your project if it doesn't have it yet

add a build stage

execute the tests

do the same also with sanitizers

build an optimized (but with debug info) single processor application (but possibly multithreaded) and
profile it with

gprofng / instruments (realtime sampling)

valgrind and q/kcachegrind (exact, but much slower)

coz (~realtime, requires some modifications to set the range unit, you can use sample applications)

36

