
Resource Management
About RAII, ownership, pointers and guidelines

Alberto Invernizzi, CSCS (alberto.invernizzi@cscs.ch)

mailto:alberto.invernizzi@cscs.ch

C++ is an object-oriented programming language that among
its main selling points has

 Performances

 Letting the user have full control over resources

Performance and full-control are somehow faces of the same
coin: full control allows to do very clever and smart things to

get best performances.

1

"... and with great power comes great
responsibility."

2

Example: Memory

Memory management is an important aspects for many
application, be it for

for optimization reasons
e.g.reduce memory operations costs and overhead)

memory limit constraints
e.g. embedded applications

This is one of the reasons why C++ is used in many industries,
from Game Development to HPC.

Anywhere performance and control matters.

Indeed, C++ gives you all the knobs to manage the memory: when
to allocate, when to deallocate, how much to allocate, ...

3

It's not just about memory
... it's about RESOURCEs!

Memory

File

Socket

Mutex

MPI Communicator

...

Full control of a resource means managing it correctly by

 initializing/acquiring it

 keeping it alive till needed

 release it cleanly when not useful anymore.

4

Why should we care?

Not managing correctly resources may end up in subtle bugs...

in the "best" case a memory leak

in (one of) the worst cases a race-condition (=nightmare).

5

Managing the lifetime of a resource in an object-oriented
context easily becomes difficult.

objects are created,

objects are manipulated

objects are passed around to interact with other parts of
the program

...

When the program complexity starts increasing, to ensure the
correct management of these resources “manually” becomes
unsustainable.

...and with concurrency it becomes even more difficult
(="impossible").

6

Full control hard to do!

Some languages address this problem using garbage collectors
but at the expense of performances and control.

Not a solution for C++...

...but having full control does not imply having to do it manually!

The language, through the compiler, is at our disposal. We can
and should leverage it at our service.

Here we are going to see what tools the language offers us and
which we can and should rely on to keep things under control,

aiming at

READABLE, CORRECT and EFFICIENT code.

7

RAII

RAII, which stands for Resource Allocation Is Initialization, is a
programming technique that binds resource acquisition to object
lifetime.

If an object follows RAII, it ensures that:

the resource is acquired/allocated/initialized when the object
is initialised

it will be available for the lifetime of the object

and when the object is destroyed (it goes out of scope) the
binded resource will be released too.

8

Ownership

With RAII an object starts representing the ownership of the
resource, so object has the responsibility of the correct
management.

Developer does not have anymore the "direct" responsibility of
the resource, but it does not mean they don’t have anymore
control over it.

We delegated the hard-work of managing correctly the resource
to the object and we can now reason about its ownership.

It’s a higher level of control, we don’t care anymore about what
happens when the resource has to be created/released, we just
have to think where and how long we need the resource and
manipulate the object accordingly.

9

Use-case with pointers

(Resource = Memory)

10

Raw Pointers

Every C and C++ developer had to overcome the obstacle of
pointers...

void foo() {
 int value = 26;
 int *pointer_on_stack = &value;

 int* pointer = new int(26);
 int* buffer = new int[13];

 for (int i = 0; i < 13; ++i) {
 int val = vec[i];
 if (val == 0)
 return;
 }

 delete[] buffer;
}

11

But are they the right tool for managing resources?

(i.e. resource = memory in this case)

12

Problem: Who is in charge?

Even without looking at the documentation, a reasonable
expectation is that what it returns is a pointer to a memory
allocated by the function.

gsl_multifit_fsolver* gsl_multifit_fsolver_alloc(
 const gsl_multifit_fsolver_type * T,
 size_t n,
 size_t p);

is it up to me to deallocate it and keep it alive, right?

and T ? should it be kept alive till multifit_solver is in use,
correct?

13

Problem: how should it be released?

How was it allocated?

new -> delete

new[] -> delete[]

Called by delete-expressions to deallocate storage
previously allocated for a single object.
The behavior [...] is undefined unless:

ptr is a null pointer or

is a pointer previously obtained from [...]
operator new(std::size_t) or
operator new(std::size_t, std::nothrow_t)

Called by delete[]-expressions to deallocate storage
previously allocated for an array of objects.
The behavior [...] is undefined unless:

ptr is a null pointer or

is a pointer previously obtained from [...]
operator new[](std::size_t) or
operator new[](std::size_t, std::nothrow_t)

(source: https://en.cppreference.com/w/cpp/memory/new/operator_delete)

14

https://en.cppreference.com/w/cpp/memory/new/operator_delete

Problem: burden of the management

1. Remember to do it
it's not about being too lazy, it's more about
cognitive load

2. Do it in the correct order
e.g. track dependencies between resources, is it
deterministic?

#include <algorithm>
#include <iostream>
#include <random>

int main() {
 constexpr std::size_t N = 5;
 int* buffer = new int[N];

 std::mt19937 engine;
 std::uniform_int_distribution<int> uniform_dist(1, 10);
 std::generate(buffer, buffer + N, [&]() { return uniform_dist(engine);});

 int* min_value = std::min_element(buffer, buffer + N);
 int* max_value = std::max_element(buffer, buffer + N);

 delete[] buffer;

 std::cout << *min_value << ":" << *max_value << "\n";
}

Possible output:

0:12296208

15

Have you considered all execution paths?

If a function has multiple return statements, you may have to
care about it multiple times...

bool foo(int a, int b) {
 int buffer = new int[10];

 // ... (using buffer)

 if (a == 0) {
 return false;
 }

 // ... (using buffer)

 delete[] buffer;
 return true;
}

16

... even exceptions?

In case of an exception not managed, it becomes impossible to
manage release correctly...

float foo(int a, int b) {
 int buffer = new int[10];

 // ... (using buffer)

 // possibly throwing operation...
 float result = a / b;

 // if previous instruction throws...
 // ...nobody is going to release buffer
 delete[] buffer;
 return result;
}

17

Raw pointers

do NOT follow RAII

and do NOT express ownership.

18

What if we could have an object that
allows us to avoid these problems by

implementing RAII and expressing
ownership?!

19

Object Lifetime - C'tor and D'tor

RAII binds a resource to object lifetime.

Let's see what are the main handles we have on object lifetime.

{
 LessRawPtr a; // c'tor is called

 // ...
} // d'tor is called

The language gives us the handle to the moment when an object
starts is lifetime through its constructor!

And what happen when it goes out of scope? It gets
destroyed...and the language gives us the chance to customize
what happens at destruction time through its destructor!

20

Object Lifetime

struct LessRawPtr {
 LessRawPtr() = default;
 LessRawPtr(int* ptr) : ptr_(ptr) {}
 ~LessRawPtr() { if (ptr_) delete ptr_; }

private:
 int* ptr_ = nullptr;
};

C’tors what to do when an object is created

(default) no resource managed by the obejct

(custom) bind a resource to the object

D’tor what to do when an object is destroyed

if object is bound to a resource, release it

The real magic resides in the d'tor part. It gets called as soon as an object lifetime ends:

it goes out of scope (e.g. block, expression, ...)

stack unwinding, i.e. when an exception is uncaught

We are binding a resource with an object on the stack, so we are transitively giving properties of an object
on the stack to a resource!

21

Object Lifetime in action: multiple return points

We don't have to care anymore about multiple execution paths!

void foo(int a, int b) {
 int* data = new int[26];

 if (...) {
 // ...
 delete[] data;
 return ;
 }

 // use data again

 delete[] data;
}

void foo(int a, int b) {
 LessRawPtr data(new int(26));

 if (...) {
 // ...
 return ;
 }

 // use data
}

22

Object Lifetime in action: exceptions

We don't have to care anymore about exceptions too!

void foo(int a, int b) {
 int* memory = new int[26];

 if (...) {
 // ...
 delete[] memory;
 return ;
 }

 try {
 a / b;
 }
 catch (...) {
 delete[] memory;
 }

 // ...

 delete[] memory;
}

void foo(int a, int b) {
 LessRawPtr memory(new int(26)); // call to c'tor

 if (...) {
 // ...
 return ;
 }

 a / b;

 // ... rest of code
} // call to d'tor

In case the exception is thrown, rest of code won't be executed...but the stack unwinding ensures that all
objects on the stack are destroyed, so the d'tor gets called and the resource is released cleanly!

23

RAII - Ownerhsip

Now the lifetime of the resource is bound to the object, thanks to RAII. And what about ownership?

What does it mean "ownership" for an object?
It means that an object has responsibility over the underlying resource, whatever it happens...

What can happen to an object?
We can pass it around, for instance we can copy it!

What happens when we copy an object?
From the language perspective, a new object is created...

...and what should happen from the resource perspective?
It depends!

Does the language provide an handle for this phases of the object life?

24

T(const T&) and T& operator=(const T&)

Did we specify anything about them? Nope.

What happens? Default behavior of the language.

The language cannot know aforehead how the object should behave, so it does the most simple thing.

It implicitly defines them (= default)

D'tor does nothing, i.e. empty body

Copy-{C'tor, Assigment Operator}, copy by value all attributes

What does it mean in our case? LessRawPtr has a
single attribute ptr_ , which is a simple pointer, so it
means copying the address into another object.

 How bad can it go?!

struct LessRawPtr {
 LessRawPtr(int* ptr) : ptr_(ptr) {}
 ~LessRawPtr() { if (ptr_) delete ptr_; }
private:
 int* ptr_ = nullptr;
};

25

[[SPOILER-ALERT]] really bad!

{
 LessRawPtr a(new int(26)); // c'tor
 {
 LessRawPtr b = a; // copy-c'tor
 } // d'tor (b)
 LessRawPtr c = a; // copy c'tor
} // d'tor (c and a)

https://godbolt.org/z/64bE4G3oW

a acquires the resource

in the inner block, b copies a 's resource address, because of the default copy c'tor
a and b now own "together" the same resource

b goes out of scope so the resource gets released

c will do the same that b did i.e. copy the address of a 's resource, because of the defailt copy c'tor

both a and c believe to still own the resource (even if one does not know about the other)...

...but the resource has been already released!

We should probably do something different when the object is copied ... actually there is a guideline!

26

https://godbolt.org/z/64bE4G3oW

Rule of Three

If a class requires either a:

user-defined d'tor
~LessRawPtr()

user-defined copy c'tor
LessRawPtr(const LessRawPtr&)

user-defined copy assignment operator
LessRawPtr& operator=(const LessRawPtr&)

it almost certainly requires all three.

27

What to do? It depends!

What copy-{c'tor,assignment} should do depends on how the object should behave on copy (object semantic)
with respect to the controlled resource.

It might be:

clone (aka "deep-copy")
should it allocate another identical and independent resource and copy its value?

not-copyable
should it just not being copiable at all? (= delete)

something else?
there might be other possible behaviors

Whatever you want it to do, you have to define it.

28

Just two examples...

Clone

struct LessRawPtr {
 // default c'tor
 LessRawPtr() = default;
 // custom c'tor
 LessRawPtr(int* ptr) : ptr_(ptr) {}
 // d'tor
 ~LessRawPtr() {
 if (ptr_)
 delete ptr_;
 }
 // copy c'tor
 LessRawPtr(const LessRawPtr& rhs) {
 ptr_ = new int(*rhs.ptr_);
 }
 // copy assignment operator (copy-and-swap idiom)
 LessRawPtr& operator=(const LessRawPtr& rhs) {
 LessRawPtr copy = rhs;
 std::swap(copy.ptr_, this->ptr_);
 return *this;
 }
private:
 int* ptr_ = nullptr;
};

https://godbolt.org/z/W5vffM7fM

Not-copyable

struct LessRawPtr {
 // default c'tor
 LessRawPtr() = default;
 // custom c'tor
 LessRawPtr(int* ptr) : ptr_(ptr) {}
 // d'tor
 ~LessRawPtr() {
 if (ptr_)
 delete ptr_;
 }
 // copy c'tor
 LessRawPtr(const LessRawPtr&) = delete;
 // copy assignment
 LessRawPtr& operator=(const LessRawPtr&) = delete;
private:
 int* ptr_ = nullptr;
};

https://godbolt.org/z/cPMvPd415

29

https://godbolt.org/z/W5vffM7fM
https://godbolt.org/z/cPMvPd415

First step towards a "smarter" than raw pointer

struct LessRawPtr {
 // default c'tor
 LessRawPtr() = default;
 // custom c'tor
 LessRawPtr(int* ptr) : ptr_(ptr) {}
 // d'tor
 ~LessRawPtr() {
 if (ptr_)
 delete ptr_;
 }
 // copy c'tor
 LessRawPtr(const LessRawPtr& rhs) = delete;
 // copy assignment operator
 LessRawPtr& operator=(const LessRawPtr& rhs) = delete;
private:
 int* ptr_ = nullptr;
};

Who is responsible? The object itself thanks to
RAII

How should it be released? No worries, it is up to
the object (it needs a specialization for T[])

Burden of the management? Again, no worries...it
is up to the object (and the language)

All execution paths? Yes! As soon as it goes out of
scope, it will be released.

...even in case of exceptions? Yes, because stack
unwinding makes the objects allocated on the
stack to be destroyed, so their managed resource
will be released cleanly.

What do we have? An object representing ownership of a memory allocation. This last implementation is not
copyable, so the ownership of the resource is exclusive and cannot be transferred in any way.

30

Ownership

LessRawPtr is really a partial implementation, to the extent that it cannot be really defined a pointer (e.g.
how do I access the memory in it?!) and it would need some extensions in order to make it useful.

But it already expresses the concept of ownership!

It is possible to differentiate mainly two types of ownership:

Unique (or exclusive) ownership
when there is exactly one object instance managing a specific resource

Shared ownership
when there are more objects managing the same resource (not clones, but exactly the same resource).

What is the type of LessRawPtr ownership?

31

Let's complete the
implementation of the
LessRawPtr .

Let's make it useful!

ToDo

Generalization for different
resources/types

Allow customization of destructor
(each resource has different needs)

Specialization for T and T[]

Ways to access the reosource

Decide what to do about ownership

...

32

Wait...if this is so useful and fantastic,

It is something probably existing in every C++ codebase!

Everyone should use it, no!?

33

The savvy uses to say

"don't reinvent the wheel"

34

STL Smart Pointers

STL provides a fully-featured solution for smart pointers:

std::unique_ptr<T> = unique ownership

std::shared_ptr<T> = shared ownership

std::weak_ptr<T> = shared ownership (specific use case)

Which are defined in the <memory> header.

35

STL Smart Pointers API

std::unique_ptr<T> std::shared_ptr<T>

36

std::shared_ptr<T>

1) Constructs a shared_ptr which shares ownership of
the object managed by r. If r manages no object, *this
manages no object either. [...]

This is copyable, and the copyability for it has been
implemented not to clone the resource but to "share"
the resource, allowing to extend the ownership
group.

As we trivially saw before, just copying the address
was not enough for sharing correctly the same
resource over two objects. The main problem was
that once the address was copied, the two objects
were not "linked" anyhow, so one didn't know if the
other was still using the resource or not.

How can this information about usage be shared
among multiple objects?

37

shared_ptr<T> : the machinery

They are aka reference counted smart pointers, which definition already exposes their internal mechanism.

In shared ownership, the management responsibility is shared among the group, and just the last object alive,
is allowed to actually destroy the resource.

38

shared_ptr<T> : the costs 1/2

Heap allocations are not cheap . Moreover having control block and resource allocated separately, might
be expensive in case they end up far apart in memory.

Use std::make_shared which at least allocates both all at once, i.e. single allocation and close together.

39

shared_ptr<T> : the costs 2/2

Each time we copy the shared_ptr , we are working on a shared control block. This access is thread safe, so it
requires a synchronization, which is expensive .

*note: the control block is thread safe, not the resource usage!

40

Raw vs Smart pointers

41

Raw vs Smart pointers

Raw + Smart pointers

42

Raw pointers are really useful!

Smart pointers are not a one solution fits all, raw pointers are
still very useful!

The main point to keep in mind is about ownership:

Raw pointers (+ references) = non-owning

Smart pointers = owning

By using them correctly, you vehiculate a very important
information via your API.

43

CPP Core Guidelines

R.1: Manage resources automatically using resource handles and RAII

R.3: A raw pointer (a T*) is non-owning

R.4: A raw reference (a T&) is non-owning

R.10: Avoid malloc() and free()

R.11: Avoid calling new and delete explicitly

R.20: Use unique_ptr or shared_ptr to represent ownership

R.21: Prefer unique_ptr over shared_ptr unless you need to share ownership

R.22: Use make_shared() to make shared_ptrs

R.23: Use make_unique() to make unique_ptrs

R.30: Take smart pointers as parameters only to explicitly express lifetime semantics

(source: https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-resource)

44

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-resource

45

struct Dataset {
 Dataset() {
 std::cout << "Created dataset!\n";
 };
 ~Dataset() {
 std::cout << "Deleting dataset!\n";
 }
 Dataset(const Dataset&) {
 std::cout << "Create dataset copying GBs of data\n";
 }
 Dataset& operator=(const Dataset&) {
 std::cout << "Copying GBs of data\n";
 return *this;
 }
 void initialize() {
 std::cout << "Initialize dataset...\n";
 }
};

The semantic of this object is:

Default C'tor create a dataset

Data inside a dataset can be deep-copied

46

Dataset a;
Dataset b;
b = a;

Created dataset!
Created dataset!
Copying GBs of data
Deleting dataset!
Deleting dataset!

 Perfectly fine with it!

Two datasets created, one copy, two datasets destroyed.

 Nothing unexpected.

47

Dataset createDataset() {
 Dataset x;
 x.initialize();
 return x;
}

Dataset b = createDataset();

Created dataset!
Initialize dataset...
Deleting dataset!

 I would have expected:

Two datasets created (x default, b copied)

Two dataset destroyed

Wow! No copy?!? Indeed, there is no copy: it does not call the copy-c'tor! Thanks to copy-elision!

C++ IS SUPER! BEST PERFORMANCE!

48

Copy elision

"(copy-elision) omits copy [...] constructor, resulting in zero-copy
pass-by-value semantics."

Dataset b = createDataset();

Is it a copy-constructor or a copy-assignment?

The copy assignment is a member function, so it has to be applied
to an existing object.
But at this point the object does not exist yet, so even if it looks
like an assignment, it is actually a constructor call, a copy-c'tor
call!

Ok, from the code we expect a copy constructor call, and copy
elision explicitly refers to the constructor and not to the
assignment operator...

49

Dataset createDataset() {
 Dataset x;
 x.initialize();
 return x;
}
Dataset b;
b = createDataset();

Created dataset!
Created dataset!
Initialize dataset...
Copying GBs of data
Deleting dataset!
Deleting dataset!

No copy-elision at the party, and performance are gone!

...is it so different than before?! A temporary dataset is created
and, instead of using that (as in copy-elision case), it gets copied
from, just before discarding it?!

C++ is stupid! Why can't it use temporary one also here?!

50

Why is it so stupid?!

It is not stupid, it just let you decide all details!

Remember: With C++ you have FULL CONTROL!

So here there is the plot-twist...you have control also over this specific case!

Can you spot the difference between the twos? We were talking about a "temporary"...

"deep-copy"

Dataset b;
b = a;

"no copy-elision"

Dataset b;
b = createDataset();

Can you see it? The main difference is that the temporary does not have a name!

Yes, C++ gives a knob also for this!

But, before seeing the handle, let's understand a bit better this question about temporaries...

51

In the beginning there was just LEFT and RIGHT...

Even if they are not 100% correct, these definitions are very good approximations.

lvalue s can stay "typically" on the left side of = , and rvalues can "typically" stay on the right.

lvalue is "typically" something with an identity, and rvalue has "typically" no identity

For them, the language offers two different kind of references that binds to them.

& lvalue references

&& rvalue references

An important detail:

&& (rvalue reference), extend lifetime of temporaries. Also const& (const lvalue reference) does.

52

Back to our performance problem...

Let's try to express our desired behavior in terms of lvalues and rvalues .

Dataset b;
b = a;

Dataset b;
b = createDataset();

Desiderata:

we don't want to steal from an lvalue , because it is not a temporary and someone else might still use it

we might want to steal from an rvalue , because it is a temporary and it is going to be destroyed

We used the word "steal", because a temporary object can get completely emptied. In C++ it is used the word
"move", from which it origins the move-semantic, meaning that the "ownership" of a resource can be moved
from one object to another.

53

What handles do we have?

Let's give another look at references that binds to lvalues and
rvalues :

lvalue -> &
rvalue -> &&

Actually, in the copy c'tor and in the copy assignment operator
we use the const& , which is an lvalue reference...

Dataset(const Dataset&) and
Dataset& operator=(const Dataset&)

What if we use an rvalue reference instead of an lvalue one?

Dataset(Dataset&&) and Dataset& operator=(Dataset&&)

We get a move c'tor and a move assignment operator!

54

struct Dataset {
 Dataset() {
 std::cout << "Created dataset!\n";
 };
 ~Dataset() {
 std::cout << "Deleting dataset!\n";
 }
 Dataset(const Dataset&) {
 std::cout << "Create dataset copying GBs of data\n";
 }
 Dataset& operator=(const Dataset&) {
 std::cout << "Copying GBs of data\n";
 return *this;
 }
 Dataset(Dataset&&) {
 std::cout << "Stole dataset\n";
 }
 Dataset& operator=(Dataset&&) {
 std::cout << "Stole dataset\n";
 return *this;
 }
 void initialize() {
 std::cout << "Initialize dataset...\n";
 }
};

Now Dataset is able to behave differently depending on the
value category of the argument:

lvalue -> copy c'tor or copy assignment operator

rvalue -> move c'tor or move assignment operator

55

Dataset b;
b = createDataset();

Created dataset!
Created dataset!
Initialize dataset...
Stole dataset
Deleting dataset!
Deleting dataset!

Now the temporary gets stolen during the assignment.

Performance are back!

56

Rule of Five

Because the presence of a user-defined (or = default or = delete)

D'tor

Copy C'tor

Copy Assignment Operator

any class for which move semantics are desirable, has to declare:

1. D'tor

2. Copy c'tor

3. Copy assignment

4. Move c'tor

5. Move assignment

Unlike Rule of Three, failing to implement move semantic is not an
error, but a missed optimization opportunity.

57

This is just a part of the story...

We might want to move resources also from an lvalue , because we know it is going to be destroyed soon or
it is not going to be used anymore.

C++ gives us an handle also for this! We can "move" ownership also from an lvalue with std::move() !

Dataset a;
Dataset b;
b = std::move(a);

Created dataset!
Created dataset!
Stole dataset
Deleting dataset!
Deleting dataset!

Note: When you call std::move(a) , after that call you cannot assume anything about a . It is in a valid but
unspecified state.

58

std::move DOES NOT move

std::move tells that you "might move from" the object, but actually it does not move anything.

The "move" of the resources is up to the function that gets the rvalue reference, it might also not doing
anything with it or just reading from it.

Indeed, std::move is just an unconditional cast from an lvalue reference to an rvalue reference!

It makes an lvalue appear like an rvalue !

Actually, the implementation is something very similar to this simplified snippet

T&& std::move(T& lvalue) {
 return static_cast<T&&>(lvalue);
}

See actual LLVM libc++ implementation @
https://github.com/llvm/llvm-project/blob/main/libc/src/__support/CPP/utility/move.h

59

https://github.com/llvm/llvm-project/blob/main/libc/src/__support/CPP/utility/move.h

Value categories

60

Value categories

61

Value categories

62

Value categories

63

Value categories

64

Value categories

65

Why lvalue / rvalue definintions in terms of is a good approximation?

From https://en.cppreference.com/w/cpp/language/reference

When a function's return type is lvalue reference, the function
call expression becomes an lvalue expression:

#include <iostream>
#include <string>

char& char_number(std::string& s, std::size_t n) {
 return s.at(n);
}

int main()
{
 std::string str = "Test";
 char_number(str, 1) = 'a';
 std::cout << str << '\n';
}

Tast

66

https://en.cppreference.com/w/cpp/language/reference

Given RuleOf3 and RuleOf5, what's the next in the sequence?

A. RuleOf7
B. RuleOf0
C. RuleOf8

67

Rule of Zero

Classes that have:

custom destructors

copy/move constructors or

copy/move assignment operators

should deal exclusively with ownership
(which follows from the Single Responsibility Principle).

Other classes should not have custom destructors, copy/move
constructors or copy/move assignment operators.

68

Let's say we hve C-style library

#include <iostream>
#include <memory>
#include <zmq.h>

int main (void) {
 void *context = zmq_ctx_new();
 void *requester = zmq_socket(context, ZMQ_REQ);

 zmq_connect(requester, "tcp://localhost:5555");
 zmq_send(requester, "Hello", 5, 0);

 zmq_close(requester);
 zmq_ctx_destroy(context);

 return 0;
}

69

We can apply RuleOf5!

struct ZmqContext {
 ZmqContext(void* handle) : context_(handle) {}
 ~ZmqContext() { zmq_ctx_destroy(context_); }

 ZmqContext(const ZmqContext&) = delete;
 ZmqContext& operator=(const ZmqContext&) = delete;

 ZmqContext(ZmqContext&&) = default;
 ZmqContext& operator=(ZmqContext&&) = default;
 private:
 void* context_;
};

int main () {
 ZmqContext context = zmq_ctx_new();
 ZmqSocket requester = zmq_socket(context, ZMQ_REQ);

 zmq_connect(requester.get(), "tcp://localhost:5555");
 zmq_send(requester.get(), "Hello", 5, 0);

 return 0;
}

70

Is it really worth it?
What about applying RuleOf0??

71

RuleOf0 rocks!

Actually we can use std::unique_ptr to express what kind of ownership we want to have for our object.

It's generic, it's reusable!

#include <iostream>
#include <memory>
#include <zmq.h>

struct ZmqContext {
 ZmqContext(void* handle) : context_(handle, zmq_ctx_destroy) {}
 void* get() const noexcept { return context_.get(); }

 private:
 std::unique_ptr<void, decltype(&zmq_ctx_destroy)> context_;
};

struct ZmqSocket {
 ZmqSocket(void* handle) : socket_(handle, zmq_close) {}
 void* get() const noexcept { return socket_.get(); }

 private:
 std::unique_ptr<void, decltype(&zmq_close)> socket_;
};

int main () {
 ZmqContext context = zmq_ctx_new();
 ZmqSocket requester = zmq_socket(context, ZMQ_REQ);

 zmq_connect(requester.get(), "tcp://localhost:5555");
 zmq_send(requester.get(), "Hello", 5, 0);

 return 0;
}

72

In the end it is just

RuleOf0 vs RuleOf5

In modern C++ (>=C++11), where move-semantic has been
introduced, RuleOf3 has pratically been superseeded by RuleOf5.

Moreover, as we have seen, STL provides generic objects
encapsulating ownership policies, e.g. std::unique_ptr and
std::shared_ptr , allowing us to completely relying on them for

the management.

For this reason the guideline is

"prefer applyig RuleOf0 if possible, otherwise fallback to RuleOf5"

C++ Core Guidelines - C.20

73

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c20-if-you-can-avoid-defining-default-operations-do

Conclusion/Recap

Introduction to RAII and Ownership

RuleOfThree

Smart Pointers

Move semantic as an optimization chance

RuleOfFive

Value categories

RuleOfZero

74

Q&A

Thanks

Alberto Invernizzi
Research Software Engineer @ CSCS

75

