+&@_ CSCS S
\\' ' Centro Svizzero di Calcolo Scientifico E'" Z U r I Ch

Swiss National Supercomputing Centre

Resource Management

About RAIl, ownership, pointers and guidelines

Alberto Invernizzi, CSCS (alberto.invernizzi@cscs.ch)

mailto:alberto.invernizzi@cscs.ch

C++ is an object-oriented programming language that among
its main selling points has

e «#u Performances

e se Letting the user have full control over resources

Performance and full-control are somehow faces of the same
coin: full control allows to do very clever and smart things to
get best performances.

¥% cscs .

ETH:zurich

"..and with great power comes great
responsibility."”

ETH:zurich

30
\\0‘0 CSCS

Example: Memory

Memory management is an important aspects for many
application, be it for

e for optimization reasons
e.g.reduce memory operations costs and overhead)

e memory limit constraints
e.g.embedded applications

This is one of the reasons why C++ is used in many industries,
from Game Development to HPC.

Anywhere performance and control matters.

Indeed, C++ gives you all the knobs to manage the memory: when
to allocate, when to deallocate, how much to allocate, ...

ETH:zurich

It's not just about memory
... it's about RESOURCEsS!

e Memory
e File

e Socket
e Mutex

¢ MP| Communicator

Full control of a resource means managing it correctly by

e < initializing/acquiring it
o 2 keeping it alive till needed

=N

e .« release it cleanly when not useful anymore.

\?\o}o CSCS 4 ETHziirich

Why should we care?

Not managing correctly resources may end up in subtle bugs...

e inthe "best" case a memory leak

e in (one of) the worst cases a race-condition 3€ (=nightmare js:).

¥% cscs c

Managing the lifetime of a resource in an object-oriented
context easily becomes difficult.

e objects are created,

e objects are manipulated

e objects are passed around to interact with other parts of
the program

When the program complexity starts increasing, to ensure the
correct management of these resources “manually” becomes
unsustainable.

...and with concurrency it becomes even more difficult
(="impossible" %).

6 ETH:zurich

30
\\0‘0 CSCS

Full control == hard to do!

Some languages address this problem using garbage collectors
but at the expense of performances and control.

Not a solution for C++...

..but having full control does not imply having to do it manually!

The language, through the compiler, is at our disposal. We can
and should leverage it at our service.

Here we are going to see what tools the language offers us and
which we can and should rely on to keep things under control,
aiming at

READABLE, CORRECT and EFFICIENT code.

ETH:zurich

RAII

RAIIl, which stands for Resource Allocation Is Initialization, is a

programming technique that binds resource acquisition to object
lifetime.

If an object follows RAII, it ensures that:

e the resource is acquired/allocated/initialized when the object
is initialised
e it will be available for the lifetime of the object

e and when the object is destroyed (it goes out of scope) the
binded resource will be released too.

\?\o}o CSCS g ETHziirich

30
\\0‘0 CSCS

Ownership

With RAII an object starts representing the ownership of the
resource, so object has the responsibility of the correct
management.

Developer does not have anymore the "direct" responsibility of
the resource, but it does not mean they don’t have anymore
control over it.

We delegated the hard-work of managing correctly the resource
to the object and we can now reason about its ownership.

t’s a higher level of control, we don’t care anymore about what
nappens when the resource has to be created/released, we just
nave to think where and how long we need the resource and
manipulate the object accordingly.

ETH:zurich

- —— - Use-case with pointers

(Resource = Memory)

10

N A g CSCS

Every C and C++ developer had to overcome the obstacle of

pointers...

Raw Pointers

void foo() {

int value

26

int *pointer_on_stack = &value;

int* pointer
int* buffer

for (int i
int val
if (val

return;

}

new int(26);
new int[13];

0; 1 < 13; ++i) {

vec[i];
0)

delete[] buffer;

11

ETH:zurich

But are they the right tool for managing resources?

(i.e. resource = memory in this case)

\:o:o CSCS 19 ETHziirich

Problem: Who is in charge?

Even without looking at the documentation, a reasonable

expectation is that what it returns is a pointer to a memory
allocated by the function.

gsl_multifit_fsolver* gsl_multifit_fsolver_alloc(
const gsl_multifit_fsolver_type * T,
size_t n,

size_t p);

e isitup to me to deallocate it and keep it alive, right?

e and T ?should it be kept alive till multifit_solver is in use,
correct?

\go CSCS 13 ETHziirich

Problem: how should it be released?

How was it allocated?

® new -> delete

® new[] -> delete]]
Called by delete-expressions to deallocate storage Called by delete[]-expressions to deallocate storage
previously allocated for a single object. previously allocated for an array of objects.
The behavior |...] is undefined unless: The behavior |...] is undefined unless:
e ptris a null pointer or e ptris a null pointer or
e jsapointer previously obtained from [...] e /s apointer previously obtained from |[...]
operator new(std::size_t) or operator new[](std::size_t) oOr
operator new(std::size_t, std::nothrow_t) operator new[](std::size_t, std::nothrow_t)

(source: https://en.cppreference.com/w/cpp/memory/new/operator _delete)

\go CSCS 14 ETHziirich

https://en.cppreference.com/w/cpp/memory/new/operator_delete

Problem: burden of the management

1. Remember todo it #include <algorithm>
. . . #include <iostream>
it's not about being too lazy, it's more about #include <random>
cognitive load int main() {

constexpr std::size_t N = 5;

2. Do it in the correct order T e = men Sl
. HP- std::mt19937 engine;
e'g' traCk dependenCIGS between resources’ IS It std::uniform_int_distribution<int> uniform_dist(1, 10);
deterministic? std::generate(buffer, buffer + N, [&]() { return uniform_dist(engine);});

int* min_value
int* max_value

std::min_element(buffer, buffer + N);
std::max_element(buffer, buffer + N);

delete[] buffer;

std::cout << *min_value << ":" << *max_value << "\n";

Possible output:

0:12296208

1¥,® CSCs 15 ETHzurich

Have you considered all execution paths?

If a function has multiple return statements, you may have to
care about it multiple times...

bool foo(int a, int b) {
int buffer = new int[10];

// ... (using buffer)
if (a == 0) {

return false:

}

// ... (using buffer)

delete[] buffer;
return true;

\3\010 CSCS 16 ETHziirich

... @ven exceptions?

In case of an exception not managed, it becomes impossible to
manage release correctly...

float foo(int a, int b) {
int buffer = new int[10];

// ... (using buffer)

// possibly throwing operation. ..
float result = a / b;

// 1if previous instruction throws. ..

// ...nobody is going to release buffer
delete[] buffer;

return result;

1¥,® CSCs 17 ETHzurich

Raw pointers
do NOT follow RAII

and do NOT express ownership.

\:o:o CSCS 18 ETHziirich

P
\\0‘0 CSCS

Object Lifetime - C'tor and D'tor

RAII binds a resource to object lifetime.

Let's see what are the main handles we have on object lifetime.

{

LessRawPtr a; // ¢ 'tor is called

// ...
} // d'tor is called

The language gives us the handle to the moment when an object
starts is lifetime through its constructor!

And what happen when it goes out of scope? It gets
destroyed...and the language gives us the chance to customize
what happens at destruction time through its destructor!

20

ETH:zurich

Object Lifetime

struct LessRawPtr { e C'tors what to do when an object is created
LessRawPtr() = default;
LessRawPtr(int* ptr) : ptr_(ptr) {}
~LessRawPtr() { if (ptr_) delete ptr_; }

o (default) no resource managed by the obejct
o (custom) bind a resource to the object
private: e D’tor what to do when an object is destroyed

int* ptr_ = nullptr; . .) .
¥ o if object is bound to a resource, release it

The real magic / resides in the d'tor part. It gets called as soon as an object lifetime ends:

e it goes out of scope (e.g. block, expression, ...)

e stack unwinding, i.e. when an exception is uncaught

We are binding a resource with an object on the stack, so we are transitively giving properties of an object
on the stack to a resource!

\:o:o CSCS 21 ETHziirich

Object Lifetime in action: multiple return points

We don't have to care anymore about multiple execution paths! &

void foo(int a, int b) {
int* data = new int[26];

if (...) {
// ...
delete[] data;
return ;

Y

// use data again

delete[] data;

P
\\0‘0 CSCS

22

void foo(int a, int b) {
LessRawPtr data(new int(26));

if (...) {
// ...
return ;

}

// use data

ETH:zurich

Object Lifetime in action: exceptions

We don't have to care anymore about exceptions too! &

L)

void foo(int a, int b) {
int* memory = new int[26];

if (...) {
// ...
delete[] memory;
return ;

}

try {
a/ b;

}
catch (...) {

delete[] memory;

}
/.

delete[] memory;

void foo(int a, int b) {
LessRawPtr memory(new int(26)) ;

if (...) {
// ...
return

a/ b;

// ... rest of code

// call to c'tor

// call to d'tor

In case the exception is thrown, rest of code won't be executed...but the stack unwinding ensures that all
objects on the stack are destroyed, so the d'tor gets called and the resource is released cleanly! =

N A g CSCS

23

ETH:zurich

RAIl 2 - Ownerhsip ?

Now the lifetime of the resource is bound to the object, thanks to RAIl. And what about ownership?

e What does it mean "ownership" for an object?
It means that an object has responsibility over the underlying resource, whatever it happens...

e What can happen to an object?
We can pass it around, for instance we can copy it!

e What happens when we copy an object?
From the language perspective, a new object is created...

e ...and what should happen from the resource perspective?
It depends!

Does the language provide an handle for this phases of the object life?

\?\o:-o CSCS o4 ETHziirich

T(const T&) and T& operator=(const T&)

e Did we specify anything about them? Nope.
e What happens? Default behavior of the language.

The language cannot know aforehead how the object should behave, so it does the most simple thing.
It implicitly defines them (= default)

e D'tor does nothing, i.e. empty body
e Copy-{C'tor, Assigment Operator}, copy by value all attributes

What does it mean in our case? LessRawPtr has a struct LessRawPtr {
single attribute ptr_, which is a simple pointer, so it LessRawPtr(int* ptr) : ptr_(ptr) {}

) .) ~LessRawPtr() { if (ptr_) delete ptr_; }
means copying the address into another object. orivate:

int* ptr_ = nullptr;

& How bad canitgo?! & };

\:0:0 CSCS ot ETHziirich

[[SPOILER-ALERT]] really bad!

{ https://godbolt.org/z/64bE4G30W
LessRawPtr a(new int(26)); // c'tor
{
LessRawPtr b = a; // copy-c'tor
} // d'tor (b)
LessRawPtr c = a; // copy c'tor
} // d'tor (c and a)

e a acquires the resource

e inthe inner block, b copies a's resource address, because of the default copy c’tor
a and b now own "together" the same resource @

e b goes out of scope so the resource gets released &
e ¢ willdothesamethat b didi.e.copy the address of a 's resource, because of the defailt copy c'tor
e both a and c¢ believe to still own the resource (even if one does not know about the other)...

e ..but the resource has been already released! 3¢

We should probably do something different when the object is copied ... actually there is a guideline!

\:o:o CSCS 24 ETHziirich

https://godbolt.org/z/64bE4G3oW

Rule of Three

If a class requires either a:

e user-defined d'tor
~LessRawPtr ()

e user-defined copy c'tor

LessRawPtr(const LessRawPtr&)

e user-defined copy assignment operator

LessRawPtr& operator=(const LessRawPtr&)

it almost certainly requires all three.

ETH:zurich

\\):0 cscs .

What to do? It depends!

What copy-{c'tor,assignment}should do depends on how the object should behave on copy (object semantic)
with respect to the controlled resource.

It might be:

e clone (aka "deep-copy")
should it allocate another identical and independent resource and copy its value?

e not-copyable
should it just not being copiable at all? (= delete)

e something else?
there might be other possible behaviors

Whatever you want it to do, you have to define it. ®2

\?\o}o CSCS)8 ETHziirich

Just two examples...

Clone

Not-copyable

struct LessRawPtr {
// default c'tor
LessRawPtr() = default;
// custom c'tor
LessRawPtr(int* ptr) : ptr_(ptr) {}
// d'tor
~LessRawPtr() {
if (ptr.)
delete ptr_;

}
// copy c'tor
LessRawPtr(const LessRawPtr& rhs) {
ptr_ = new int(*rhs.ptr_);
}
// copy assignment operator (copy-and-swap idiom)
LessRawPtr& operator=(const LessRawPtr& rhs) {
LessRawPtr copy = rhs;
std::swap(copy.ptr_, this->ptr_);
return *this;
}
private:
int* ptr_ = nullptr;
b

struct LessRawPtr {
// default c'tor
LessRawPtr() = default;
// custom c 'tor
LessRawPtr(int* ptr) : ptr_(ptr) {}
// d'tor
~LessRawPtr() {
if (ptr.)
delete ptr_;

}

// copy c'tor

LessRawPtr(const LessRawPtr&) = delete;

// copy assignment

LessRawPtr& operator=(const LessRawPtr&) = delete;
private:

int* ptr_ = nullptr;
b

https://godbolt.org/z/ W5v{fM7fM

N A g CSCS

29

https://godbolt.org/z/cPMvPd415

ETH:zurich

https://godbolt.org/z/W5vffM7fM
https://godbolt.org/z/cPMvPd415

First step towards a "smarter" than raw pointer

'

struct LessRawPtr {

// default c'tor
LessRawPtr() = default;
// custom c'tor
LessRawPtr(int* ptr)
// d’'tor
~LessRawPtr() {

if (ptr_)

delete ptr_;

coptr_(ptr) {}

)

// copy c'tor

LessRawPtr(const LessRawPtr& rhs) =
// copy assignment operator

delete;

LessRawPtr& operator=(const LessRawPtr& rhs)

private:

int* ptr_ = nullptr;

delete;

e Who is responsible? The object itself thanks to

RAII

How should it be released? No worries, it is up to
the object (it needs a specialization for T[])

Burden of the management? Again, no worries...it
is up to the object (and the language)

All execution paths? Yes! As soon as it goes out of
scope, it will be released.

...even in case of exceptions? Yes, because stack
unwinding makes the objects allocated on the
stack to be destroyed, so their managed resource
will be released cleanly.

What do we have? An object representing ownership of a memory allocation. This last implementation is not
copyable, so the ownership of the resource is exclusive and cannot be transferred in any way.

&% cscs

S 4

30

ETH:zurich

Ownership

LessRawPtr is really a partial implementation, to the extent that it cannot be really defined a pointer (e.g.
how do | access the memory init?!) and it would need some extensions in order to make it useful.

But it already expresses the concept of ownership!
It is possible to differentiate mainly two types of ownership:

e Unique (or exclusive) ownership
when there is exactly one object instance managing a specific resource

e Shared ownership
when there are more objects managing the same resource (not clones, but exactly the same resource).

What is the type of LessRawPtr ownership?

\:o:o CSCS 31 ETHziirich

Let's complete the
implementation of the

LessRawPtr .

Let's make it useful!

ToDo

e Generalization for different
resources/types

e Allow customization of destructor
(each resource has different needs)

e Specialization for T and T[]
e \Ways to access the reosource

e Decide what to do about ownership

¥% cscs 35

Wait...if this is so useful and fantastic,

It is something probably existing in every C++ codebase!

Everyone should use it, no!?

\:o:o CSCS 33 ETHziirich

The savvy uses to say

"don't reinvent the wheel”

\g‘ CSCS 24 ETHziirich

STL Smart Pointers

STL provides a fully-featured solution for smart pointers:

® std::unique_ptr<T> = unique ownership
e std::shared_ptr<T> = shared ownership

e std::weak_ptr<T> = shared ownership (specific use case)

Which are defined in the <memory> header.

\g; CSCS 35 ETHziirich

STL Smart Pointers API

std: :unique_ptr<T> std: :shared_ptr<T>

Member functions Member functions
constructs a new unique ptr constructs new shared_ptr
(constructor) 4 lic member function) [constructor) {public member function)
destructs the managed object if such is present destructs the owned object if no more shared ptrs link to it
(destructor) {public member function) (destructor) {public member function)
assigns the unique ptr _ assigns the shared_ptr
operator= [publﬁ: member rungtimﬁp operators {public member function)
Modifiers Modifiers
ralassa returns a pointer to the managed object and releases the ownership reset replaces the managed object
{public member function) {public member function)
replaces the managed object swaps the managed objects
reset {public member function) swap (public member function)
cwa swaps the managed objects Observers
p (pulblic member function)
returns the stored pointer
Observers get {public member function)
et returns a pointer to the managed object operator* dereferences the stored pointer
9 (pulblic member function) operator-= {public member function)
returns the deleter that is used for destruction of the managed object provides indexed access to the stored array
get_deleter (public member function) operator[] (c++17) {public member function)
checks if there is an associated managed object returns the number of shared_ptr objects referring to the same managed object
operator bool (public member function) use_count (publlc member function] _

checks whether the managed object is managed only by the current shared ptr instance
{public member function)

Single-object version, unique_ptr<T=> unique (until C++20)

operator* dereferences pointer to the managed object checks if the stored pointer is not null
operator-= (public member function) operator boel {public member function)
Array version, unique ptr<T[]> owner_before provides owner-based ordering of shared pointers

{public member function)

provides indexed access to the managed array

operator(] (public member function)

\‘o} CSCS 34 ETHzirich

std: :shared_ptr<T>

std::shared_ptr<T>:Shared ptr

constexpr shared ptr() noexcept;
constexpr shared _ptr(std::nullptr_t) noexcept;

template< class Y >
explicit shared ptr(Y* ptr);

template< class Y, class Deleter >
shared ptr(Y* ptr, Deleter d);

template< class Deleter =
shared ptr(std::nullptr t ptr, Deleter d };

template< class Y, class Deleter, class Alloc =
shared ptr(Y* ptr, Deleter d, Alloc alloc);

template< class Deleter, class Alloc =
shared ptr(std::nullptr_t ptr, Deleter d, Alloc alloc);

template< class Y >
shared ptr(const shared ptr<Y=>& r, element type* ptr | noexcept;

template< class Y >
shared ptr(shared ptr<Y=&& r, element type* ptr) noexcept;

shared ptr(const shared ptr& r) noexcept;

(1)
(2

(3
(4]
(5]
(6]
(7
(8]

(8]

(9]

template< class Y >
shared ptr(const shared ptr<¥=& r) noexcept;

shared ptr(shared ptr&& r) noexcept;

template< class Y >
shared ptr(shared ptr<¥=&& r) noexcept;

(9]
(1o}
(10)

template< class Y >
explicit shared ptr(const std::weak ptr<Y>& r };

template< class Y >
shared ptr(std::auto ptr<Y>&& r),

(11)

(12}

template< class Y, class Deleter >

13
shared ptr(std::unigue ptr<Y, Deleter=&& r);)

1) Constructs a shared _ptr which shares ownership of

the object managed by r. If r manages no object, *this
manages no object either. [...]

N A g CSCS

37

This is copyable, and the copyability for it has been
implemented not to clone the resource but to "share'
the resource, allowing to extend the ownership
group.

As we trivially saw before, just copying the address
was not enough for sharing correctly the same
resource over two objects. The main problem was
that once the address was copied, the two objects
were not "linked" anyhow, so one didn't know if the
other was still using the resource or not.

How can this information about usage be shared
among multiple objects?

ETH:zurich

shared_ptr<T> : the machinery

They are aka reference counted smart pointers, which definition already exposes their internal mechanism.

ToTe N,
525 S,

control resource
block

In shared ownership, the management responsibility is shared among the group, and just the last object alive,
Is allowed to actually destroy the resource.

\3\0:0 cscs 18 ETHziirich

shared_ptr<T> : the costs 1/2

Heap allocations are not cheap $. Moreover having control block and resource allocated separately, might
be expensive in case they end up far apart in memory.

[
|
|
|
| block
I

|
|
|
control I resource :
|
%

Use std::make_shared which at least allocates both all at once, i.e. single allocation and close together.

\\0‘0 CSCS 39 ETHzurich

shared_ptr<T> : the costs 2/2

Each time we copy the shared_ptr, we are working on a shared control block. This access is thread safe, so it

requires a synchronization, which is expensive &.

The manager is shared, so each copy increments the
same counter.

This is implemented with atomic, which means that it is
thread-safe, but it comes at a cost: synchronization.

control resource
block

*note: the control block is thread safe, not the resource usage!

\g; CSCS 40 ETHziirich

Raw vs Smart pointers

<& .
1¥,® CSCs 41 ETH:zurich

Raw-vs-Smartpeoeinters

Raw + Smart pointers

\:o:o CSCS 49 ETHziirich

Raw pointers are really useful!

Smart pointers are not a one solution fits all, raw pointers are
still very useful!

The main point to keep in mind is about ownership:

e Raw pointers (+ references) = non-owning

e Smart pointers = owning

By using them correctly, you vehiculate a very important
information via your API.

\?\o}o CSCS 43 ETHziirich

CPP Core Guidelines

e R.1: Manage resources automatically using resource handles and RAII
e R.3: Araw pointer (a T*) is non-owning
e R.4: Araw reference (a T&) is non-owning

e R.10: Avoid malloc() and free()

e R.11: Avoid calling new and delete explicitly

e R.20: Use unique_ptr or shared_ptr to represent ownership

e R.21: Prefer unique_ptr over shared_ptr unless you need to share ownership
e R.22: Use make_shared() to make shared_ptrs

e R.23: Use make_unique() to make unique_ptrs

e R.30: Take smart pointers as parameters only to explicitly express lifetime semantics

(source: https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-resource)

\?\o:-o CSCS 44 ETHziirich

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-resource

WHORREWE2DJC S PROGRANMERS

"4

WHATDO WEWANT22HPERFORMANCE!

r
I.i-
\

<& .
1¥,® CSCs A5 ETH:zurich

struct Dataset {
Dataset() {
std: :cout
'
~Dataset() {
std: :cout

}

Dataset(const
std: :cout

}

std: :cout

}

std: :cout

}
s

<< "Created dataset!\n";

<< "Deleting dataset!\n";

Dataset&) {

<< "Create dataset copying GBs of data\n";

Dataset& operator=(const Dataset&) {

<< "Copying GBs of data\n";

return *this;

void initialize() {
<< "Initialize dataset...\n";

The semantic of this object is:

e Default C'tor create a dataset

e Data inside a dataset can be deep-copied

N A g CSCS

46

ETH:zurich

N R g CSCS

Dataset a;
Dataset b;
b = a;

Created dataset!
Created dataset!
Copying GBs of data
Deleting dataset!
Deleting dataset!

Perfectly fine with it!
Two datasets created, one copy, two datasets destroyed.

Nothing unexpected.

47

ETH:zurich

Dataset createDataset() {
Dataset Xx;
X.initialize();
return Xx;

}

Dataset b = createDataset();

Created dataset!
Initialize dataset...
Deleting dataset!

& | would have expected:

e Two datasets created (x default, b copied)

e Two dataset destroyed

Wow! No copy?!? Indeed, there is no copy: it does not call the copy-c'tor! Thanks to copy-elision!

C++ IS SUPER! BEST PERFORMANCE!

\3\0:0 CSCS 48 ETHziirich

P
\\0‘0 CSCS

Copy elision

"(copy-elision) omits copy [...] constructor, resulting in zero-copy
pass-by-value semantics.”

Dataset b = createDataset();

Is it a copy-constructor or a copy-assignment?

The copy assignment is a member function, so it has to be applied
to an existing object.

But at this point the object does not exist yet, so even if it looks
like an assignment, it is actually a constructor call, a copy-c'tor
call!

Ok, from the code we expect a copy constructor call, and copy
elision explicitly refers to the constructor and not to the
assignment operator...

49

ETH:zurich

Dataset createDataset() {

Dataset Xx;
X.initialize();
return x;

}

Dataset b;

b = createDataset();

Created dataset!
Created dataset!
Initialize dataset...
Copying GBs of data
Deleting dataset!
Deleting dataset!

No copy-elision at the party, and performance are gone!

...Is it so different than before?! A temporary dataset is created
and, instead of using that (as in copy-elision case), it gets copied
from, just before discarding it?!

C++ is stupid! Why can't it use temporary one also here?!

\g; CSCS 50 ETHziirich

Why is it so stupid?!
It is not stupid, it just let you decide all details!

Remember: With C++ you have FULL CONTROL!

So here there is the plot-twist...you have control also over this specific case!

Can you spot the difference between the twos? We were talking about a "temporary"...

"deep-copy"

"no copy-elision”

Dataset b;
b = a;

Dataset b;
b = createDataset();

Canyou see it? The main difference is that the temporary does not have a name!

But, before seeing the handle, let's understand a bit better this question about temporaries...

P
\\0‘0 CSCS

51

Yes, C++ gives a knob also for this!

ETH:zurich

In the beginning there was just LEFT and RIGHT...

Even if they are not 100% correct, these definitions are very good approximations.

e 1lvalue s can stay "typically” on the left side of =, and rvalues can "typically"” stay on the right.

e 1lvalue is "typically"” something with an identity, and rvalue has "typically” no identity
For them, the language offers two different kind of references that binds to them.

e & lvalue references

e && rvalue references
An important detail:

&& (rvalue reference), extend lifetime of temporaries. Also const& (const Ivalue reference) does.

\:o:o CSCS - ETHziirich

Back to our performance problem...

Let's try to express our desired behavior in terms of 1lvalues and rvalues.

Dataset b; Dataset b;
b = a; b = createDataset();
Desiderata:

e we don't want to steal from an 1lvalue, because it is not a temporary and someone else might still use it

e we might want to steal from an rvalue, because it is a temporary and it is going to be destroyed

We used the word "steal", because a temporary object can get completely emptied. In C++ it is used the word
"move", from which it origins the move-semantic, meaning that the "ownership" of a resource can be moved

from one object to another.

\go CSCS £q ETHziirich

30
\\0‘0 CSCS

What handles do we have?

Let's give another look at references that binds to 1lvalues and

rvalues :

lvalue -> &
rvalue -> &&

Actually, in the copy c'tor and in the copy assighment operator
we use the const&, whichis an lvalue reference...

Dataset(const Dataset&) and
Dataset& operator=(const Dataset&)

What if we use an rvalue reference instead of an lvalue one?
Dataset(Dataset&&) and Dataset& operator=(Dataset&&)

We get a move c'tor and a move assighment operator!

54

ETH:zurich

struct Dataset {
Dataset() {
std::cout << "Created dataset!\n";
s

~Dataset() {
std::cout << "Deleting dataset!\n";

}

Dataset(const Dataset&) {
std::cout << "Create dataset copying GBs of data\n";

}

Dataset& operator=(const Dataset&) {
std::cout << "Copying GBs of data\n";
return *this;

}

Dataset(Dataset&&) {
std::cout << "Stole dataset\n";

}

Dataset& operator=(Dataset&&) {
std::cout << "Stole dataset\n";
return *this;

}

void initialize() {
std::cout << "Initialize dataset...\n";

}

Now Dataset iIs able to behave differently depending on the
value category of the argument:

e lvalue -> copy c'tor or copy assignment operator

e rvalue -> move c'tor or move assignment operator

1¥,® CSCs 55 ETHzurich

Dataset b;
b = createDataset();

Created dataset!
Created dataset!
Initialize dataset...
Stole dataset
Deleting dataset!
Deleting dataset!

Now the temporary gets stolen during the assignment.

Performance are back!

\3\0‘0 CSCS 56 ETH:zurich

Rule of Five

Because the presence of a user-defined (or = default or = delete)

o D'tor
o Copy C'tor
o Copy Assignment Operator

any class for which move semantics are desirable, has to declare:

1. D'tor

2. Copy c'tor

3. Copy assignment
4. Move c'tor

5. Move assignment

Unlike Rule of Three, failing to implement move semantic is not an
error, but a missed optimization opportunity.

¥% cscs 57 ETHziirich

This is just a part of the story...

We might want to move resources also from an lvalue, because we know it is going to be destroyed soon or
It is not going to be used anymore.

C++ gives us an handle also for this! We can "move" ownership also from an 1lvalue with std: :move() !

Dataset a;
Dataset b;
b = std::move(a);

Created dataset!
Created dataset!
Stole dataset

Deleting dataset!
Deleting dataset!

Note: When you call std::move(a) , after that call you cannot assume anything about a.ltisin a valid but
unspecified state.

\3\0:0 CSCS cq ETHziirich

std: :move DOES NOT move

std: :move tells that you "might move from" the object, but actually it does not move anything.

The "move" of the resources is up to the function that gets the rvalue reference, it might also not doing
anything with it or just reading from it.

Indeed, std::move is just an unconditional cast from an lvalue reference to an rvalue reference!

It makes an 1lvalue appear like an rvalue!

Actually, the implementation is something very similar to this simplified snippet

T&& std::move(T& lvalue) {
return static_cast<T&&>(1lvalue);

}

See actual LLVM libc++ implementation @
https://github.com/llvm/lIlvm-project/blob/main/libc/src/ _support/CPP/utility/move.h

\go CSCS £o ETHziirich

https://github.com/llvm/llvm-project/blob/main/libc/src/__support/CPP/utility/move.h

Value categories

<& .
1¥,® CSCs 60 ETH:zurich

Value categories

has 'ide,nti‘tt/ no ident?ty

(N [
lvalue ~volue
L

VT 3 ..
1¥,® CSCs 61 ETH:zurich

Value categories

has Iden‘b?tt/ no 'io(e_n‘t?ty

G
<
:(>) lVaxlue,
Y
9

_ J
Y
)
g Wa.lue_
g

\g; CSCS 42 ETHziirich

Value categories

has Iden‘b?tt/ no 'io(e_n‘t?ty

g (0
<
:(>) lVaxlue,
=
9

_ Y,

R p
Y
D
g M/alue_ PN&[ue_
2

_ _/ /

\3\0:0 CSCS 43 ETHziirich

Value categories

30
\\0‘0 CSCS

not mowxlole_

moVa.’ole_

has iden‘b?tt/

-

[Va..lue_

~

no 'io(e_n‘t?ty

Pr'va.lue,

SANIA

ETH:zurich

Value categories

has Iden‘b?tt/ no 'io(e_n‘t?ty

M
K
:(>) lVaxlue_
g
9

_ Y,

SR B
v
D
g Walue_ Prvalue_
g

) y

“‘\o:o cSscSs GLVALUES . ETHziirich

WHhy 1value / rvalue definintions in terms of is a good approximation?

From https://en.cppreference.com/w/cpp/language/reference

When a function’'s return type is Ivalue reference, the function
call expression becomes an lvalue expression:

#include <iostream>
#include <string>

char& char_number(std::string& s, std::size_t n) {
return s.at(n);

}

int main()

{
std::string str = "Test";
char_number(str, 1) = 'a';
std::cout << str << '\n';

Y

Tast

\3\0:0 CSCS 44 ETHziirich

https://en.cppreference.com/w/cpp/language/reference

Given RuleOf3 and RuleOf5, what's the next in the sequence?

A. RuleOf7/
B. RuleOf0
C. RuleOf8

\:o:o CSCS 47 ETHziirich

Rule of Zero

Classes that have:

e custom destructors
e copy/move constructors or

e copy/move assignment operators

should deal exclusively with ownership
(which follows from the Single Responsibility Principle).

Other classes should not have custom destructors, copy/move
constructors or copy/move assignment operators.

¥% cscs 68 ETHziirich

Let's say we hve C-style library

#include <iostream>
#include <memory>
#include <zmq.h>

int main (void) {
void *context = zmg_ctx_new(

)
void *requester = zmq_socket(context, ZMQ_REQ);

zmq_connect(requester, "tcp://localhost:5555");
zmg_send(requester, "Hello", 5, 0);

zmg_close(requester);
zmg_ctx_destroy(context);

return 9;

1¥,® CSCs 69 ETHzurich

We can apply RuleOf5!

struct ZmgContext {
/mqContext(void* handle) : context_(handle) {}
~ZmgqContext() { zmg_ctx_destroy(context_); }

ZmqContext(const ZmgContext&) = delete;
ZmgContext& operator=(const ZmgContext&) = delete;

/mqContext(ZmgContext&&) = default;
ZmgContext& operator=(ZmgContext&&) = default;
private:

void* context_;

int main () {
ZmgContext context = zmg_ctx_new();
ZmgSocket requester = zmg_socket(context, ZMQ_REQ);

zmg_connect(requester.get(), "tcp://localhost:5555");
zmq_send(requester.get(), "Hello", 5, 0);

return 0;

1¥,® CSCs 70 ETHzurich

Is it really worth it?
What about applying RuleOf0??

\:o:o CSCS 71 ETHziirich

RuleOf0 rocks!

Actually we can use std::unique_ptr to express what kind of ownership we want to have for our object.

It's generic, it's reusable!

#include <iostream>
#include <memory>
#include <zmqg.h>

int main () {

ZmgContext context = zmg_ctx_new();

ZmgqSocket requester = zmg_socket(context, ZMQ_REQ);
struct ZmgContext {

/mqContext(void* handle) : context_(handle, zmq_ctx_destroy) {} zmq_connect(requester.get(), "tcp://localhost:5555");
void* get() const noexcept { return context_.get(); } zmg_send(requester.get(), "Hello", 5, 0);
private: return 9:
std::unique_ptr<void, decltype(&zmg_ctx_destroy)> context_;) !
b

struct ZmgSocket {
/mgSocket(void* handle) : socket_(handle, zmg_close) {}
void* get() const noexcept { return socket_.get(); }

private:
std: :unique_ptr<void, decltype(&zmg_close)> socket_;

s

1¥,® CSCs 72 ETHzurich

Inthe end it is just

RuleOf0 vs RuleOf5

In modern C++ (>=C++11), where move-semantic has been
introduced, RuleOf3 has pratically been superseeded by RuleOf5.

Moreover, as we have seen, STL provides generic objects
encapsulating ownership policies, e.g. std::unique_ptr and
std::shared_ptr, allowing us to completely relying on them for

the management.
For this reason the guideline is

"prefer applyig RuleOfO if possible, otherwise fallback to RuleOf5"

C++ Core Guidelines - C.20

\:o:o CSCS 73 ETHziirich

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c20-if-you-can-avoid-defining-default-operations-do

Conclusion/Recap

e Introduction to RAIl and Ownership

e RuleOfThree

e Smart Pointers

e Move semantic as an optimization chance
e RuleOfFive

e Value categories

e RuleOfZero

\:o:o CSCS 24 ETHziirich

Q&A

Thanks

Alberto Invernizzi
Research Software Engineer @ CSCS

\go CSCS 75 ETHziirich

