
C++ Course

Generic Programming Part I : Templates (+ some other stuff thrown in)

John Biddiscombe / Mauro Bianco



Generic programming

Wikipedia: "Generic programming is a style of computer programming in which algorithms are written in
terms of data types to-be-specified-later that are then instantiated when needed for specific types provided
as parameters."

Us:

Code re-use

(Design) Patterns

Abstraction of algorithms and data

Look no further than the STL (it is amazing)

API

Standardize the API for algorithms/operations

Use of operators and predicates

Supplying functions to algorithms (as well as data)
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Functions and Classes (a reminder)

A function is defined as return type, name, and arguments

Functions exist as code that can be linked to and called/inlined

    int add(int x, int y) { return x + y; }
    int main() { add(65, 35); }

A class is defined as a name after class (or struct)

Definition contains type, data and function members

    class name1;  // by default members are private
    struct name2; //                        public 

    class name1 {
        // insert more interesting things here ...
        int thing1;
        int func2(float) { ... };
    };
    int main() { 
      name1 x; // here we instantiate a variable of type 'name1' 
    }
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Function templates - Instantiation

A function template is not a function

It needs to be instantiated

Substitute type text into the template argument

Trivial link

    template <typename T>
    void foo(T x) {
        std::cout << x << "\n";
    }

    int main() {
        foo<int>(65);
        foo<char>(65);  
        foo<double>(3.1415);   
        foo<std::string>(std::string("string")); 
    }

        auto *p1 = &foo;      // No! this doesn't exist
        auto *p2 = &foo<int>; // Yes - address of a specific instantiation 
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Regular Function Overloading - Note

Overloading functions is quite normal, regardless of templates

It's a form of specialization/customization of the function itself

Note: Functions can't be overloaded based on return type alone

introduces ambiguities (+ problems with return type conversions)

    void function1(int x);
    void function1(float x);
    void function1(int x, float y, std::string z);
    int  function1(int x) {}                        // No!

error: functions that differ only in their return type cannot be overloaded

    struct thing1 {
        thing2 function1(int x);
        const thing2 function1(int x) const;
    };

a const modifier on member function changes the function signature (type)

so the change in return type is ok
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Template Function Overloading - Deduction

Among the options the most specialized is chosen

Introduce the term "ADL" - Argument Dependent Lookup (More later)

    template <typename T>
    void foo(T x) {
        std::cout << x << ", " << typeid(x).name() << "\n";
    }
    
    void foo(std::string const& x) {
        std::cout << "ooh! a string! " << x << "\n";
    }
    
    int main() {
        foo<int>(65);                // explicit (int)
        foo<char>(65);               // explicit (char)
        foo(3.14159);                // Argument Deduction (double)
        foo<double>(3.14159);        // explicit (double)
        foo<double>(3);              // explicit (double - automatic type conversion)
        foo(std::string("yay \o/")); // Argument Deduction (string)
    }

65, i  A, c  3.14159, d  3.14159, d  3, d  ooh! a string! yay \o/
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Order Matters

Be careful when mixing explicit and deduced arguments

explicit types must appear where expected otherwise substitution fails

    template <typename T, typename U>
    void foo(T, U) {}

    int main() {
        foo<std::string, double>("hello", 4.5); // ok - string double fits
        foo<std::string>("hello", 4.5);         // ok - string came first           
        foo<double>("hello", 4.5);              // not ok, can't deduce "std::string" in 1st place
    }

cannot convert '"hello"' (type 'const char [6]') to type 'double'

Deduction of types doesn't allow for arbitrary rearranging of template positions

Always watch out for automatic type conversions const char [6]  -> std::string
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Template Argument Deduction

To instantiate a template all the types must be known

Sometimes/Usually/Often/Mostly they can be deduced

    template <typename To, typename From> 
    To convert1(From f) {
        std::cout << typeid(To).name() << " " 
                  << typeid(From).name() << "\n";
        return static_cast<To>(f);
    }

    void g1(double d) { 
        // To = int,  deduced From = double
        int i = convert1<int>(d);    
        // To = char, deduced From = double
        char c = convert1<char>(d);  
        // deduced To = int,  deduced From = float
        int(*ptr)(float) = convert1; 
        ptr(d);
    }

i d  c d  i f  Link to example

    template <typename From, typename To> 
    To convert2(From f) {
        std::cout << typeid(To).name() << " " 
                  << typeid(From).name() << "\n";
        return static_cast<To>(f);
    }

    void g2(double d) { 
        // To = int,  From = double
        int i = convert2<double, int>(d);   
        // To = char, From = double
        char c = convert2<double, char>(d); 
        // To = char,  From = float
        int(*ptr)(float) = convert2;
        ptr(d);        
    }

i d  c d  i f
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Note : Automatic Type Conversion and Deduction

    struct thing1 {
        double some_value = 1.0;
        operator bool() const { return some_value > 0.1; }
    };
    template <typename T>
    void print_thing(const T &t) {
        std::cout << "Overload T " << t << " (" << t.some_value << ")" << "\n";
    }
    void print_thing(bool t) {
        std::cout << "Overload B " << std::boolalpha << t << "\n";
    }
    int main() {
        thing1 t1{0.05};
        print_thing(t1);                    // uses template - no overload for type thing1
        print_thing(static_cast<bool>(t1)); // uses overload - specialization for bool
    }

Overload T 0 (0.05)  Overload B false

The <<  operator picks the bool conversion, but the template doesn't (more specialized)
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Function Lookup Based on Argument (ADL) #1 a)

Which version of a function should be used when there's a choice

Argument Dependent Lookup. In this case, the argument types

struct thing1 {
    double some_value = 1.0;
    operator bool() const { return some_value > 0.1; }
    friend std::ostream & operator << (std::ostream &os, const thing1 &t) { 
        os << t.some_value; return os; 
    }
};

int main() {  
    thing1 t1{3.13};
    std::cout << t1 << " " << static_cast<bool>(t1) << std::endl;
}

The call to std::cout << t1  is essentially translated to operator << (ostream, thing1)
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Function Lookup Based on Argument (ADL) #1 b)

We can move the stream operator out of the struct if we want

struct thing1 {
    double some_value = 1.0;
    operator bool() const { return some_value > 0.1; }
};

std::ostream & operator << (std::ostream &os, const thing1 &t) { 
    os << t.some_value; return os; 
}

int main() {
    thing1 t1{3.13};
    std::cout << t1 << " " << static_cast<bool>(t1) << std::endl;
}

We must drop the friend keyword, But ...

what happens if we change struct  to class
'double thing1::some_value' is private within this context
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ADL - Namespace usage

The namespace of t1 , t2  are searched to find the right function

just like when you call std::cout << std::string('stuff')

namespace one {
    struct thing1 {
        double some_value = 1.0;
        operator bool() const { return some_value > 0.1; }
    };

    template <typename T> void print_thing(const T &t) {
        std::cout << "one Overload T " << t 
                  << " (" << t.some_value << ")" << "\n";
    }
}

int main() {
    one::thing1 t1{0.05};     
    two::thing1 t2{0.07};
    print_thing(t1);          
    print_thing(t2);
}

namespace two {
    struct thing1 {
        double some_value = 1.0;
        operator bool() const { return some_value > 0.1; }
    };

    template <typename T> void print_thing(const T &t) {
        std::cout << "two Overload T " << t 
                  << " (" << t.some_value << ")" << "\n";
    }
}

one Overload T 0 (0.05)  two Overload T 0 (0.07)
Link to longer (qualified) version
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Class templates

A class template is not a class

It needs to be instantiated, only then can an object of that type exist

    template <typename T> 
    class thing {
        using type = T;
        T member;
        std::unique_ptr<T> other;
        T operator()(T a, T b) const {...}
    };
    int main() {
      thing<int> x;
      thing<double> y;
    }

The template parameter may be used in any of the members or functions declared in the class

Function return type

one or more parameters used in a member function

used in a typedef, or declaration of another type
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Partial specialization

As mentioned - for template functions - these are really just overloads

The more specialized version is chosen when encountered

    template <typename T, typename U>
    struct X {};                        // 1 (Primary template)

    template <typename T>
    struct X<T, int> {};                // 2 (Specialization of arg2 / U)

    template <typename U>
    struct X<float, U> {};              // 3 (Specialization of arg1 / T)

    int main() {
        X<char,  double> a; // choose 1 
        X<char,  int>    b; // choose 2
        X<float, double> c; // choose 3
        X<float, int>    d; // all 3 match. what to do ???
    }

error: ambiguous partial specializations of 'X<float, int>'
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Full specialization

    template <typename T, typename U>
    struct X {};                        // 1 (Primary template)

    template <typename T>
    struct X<T, int> {};                // 2 (Specialization of arg2 / U)

    template <typename U>
    struct X<float, U> {};              // 3 (Specialization of arg1 / T)

    template <>                         // this "template <>" is important
    struct X<float, int> {};            // 4 (Full Specialization)

    int main() {
        X<char,  double> a; // choose 1 
        X<char,  int>    b; // choose 2
        X<float, double> c; // choose 3
        X<float, int>    d; // choose 4
    }

Full specialization is more specialized, so it is picked and resolves the problem
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Pattern Matching #1

    template <typename T, typename U>
    struct X {};                          // Primary

    template <typename W, typename T, typename U>
    struct X<W, X<T,U>> {};               // Specialization 1

    template <typename T>
    void foo(X<T,T>) {}                   // Function 1

    int main() {
        X<int, X<int, float>> a;          // specialization<int, primary>
        X<int, X<char, X<int, void>>> b;  // specialization<int, primary>
        X<double, double> c;              // primary 
        foo(c);                           // ok calls Function 1
        foo(b);                           // no :( does not match 
    }

candidate template ignored: deduced conflicting types for parameter 'T'

('int' vs. 'X<char, X<int, void>>') -> void foo(X<T,T>) {}
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Pattern Matching #2

    template <typename T, typename U>
    struct X {};                          // Primary

    template <typename W, typename T, typename U>
    struct X<W, X<T,U>> {};               // Specialization 1

    template <typename T>
    void foo(X<T,T>) {}                   // Function 1

    template <typename T, typename U>
    void foo(X<T,U>) {}                   // Function 2

    int main() {
        X<int, X<int, float>> a;          // specialization<int, primary>
        X<int, X<char, X<int, void>>> b;  // specialization<int, primary>
        X<double, double> c; 
        foo(c);                           // ok F1
        foo(b);                           // yay \o/ F2  
    }

Now the U  parameter is deduced to be the full X<char, X<int, void>>
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CRTP (Curiously Recurring Template Pattern) : static polymorphism

    template<typename Derived>
    class controller_base {
      template <typename... Args>
      bool initialize(int i, bool b, Args... args) {
          // lots of boilerplate code here
          return static_cast<Derived*>(this)->initialize_derived(i, b, std::forward<Args>(args)...);
      }
    }
    class controller : public controller_base<controller> {
      void initialize_derived(int i, bool b, std::string const& s) {
          // some special init for this type of controller
      }
    }

    int main() {
        controller c;
        c.initialize(42, true, "some stuff");
    }

Polymorphism allows a call to be directed to the intended type

shape->circle/square/blob - inheritance - traditionally uses VMT lookup

CRTP creates an "interface" that can be customized by derived types

routing made at compile time - because types are already known
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Default template arguments

Template arguments can be defaulted

From C++11 this is also possible on function templates

Default args can only be to the right the arguments on the right if not deduced

    template <typename T, typename Result=char>
    Result foo(T x) {
        return static_cast<Result>(x);
    }

    int main() {
        std::cout << foo(65) << "\n";             // T deduced to be int, Result char
        std::cout << foo<int>(65) << "\n";        // T explicitly int,    Result char
        std::cout << foo<int, int>(65.3) << "\n"; // T and Result, both explicitly int  
    }

A A 65

Note that because we used static_cast<Result>(x)  the double  65.3 was converted to int  without error
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Default args go on the right unless they can be deduced

    template <typename T, typename Result=char, typename Another>
    Result foo(T x, Another a) {
        std::cout << typeid(T).name() << " " << typeid(Another).name() <<" ";
        return static_cast<Result>(x);
    }

    int main() {
        // T deduced as int, Another deduced as double
        std::cout << foo(65, 3.5) << "\n";                    // 1 Result = char
        // but like this we explicitly state
        std::cout << foo<int, char, float>(65, 3.5) << "\n";  // 2 Result = char
        // in this case Another is deduced as double 
        std::cout << foo<int, float>(65, 3.5) << "\n";        // 3 Result = float (careful)
    }

output : i d A  i f A  i d 65

1. The compiler knows T  and Another  so it is ok with defaulting Result

2. We tell the compiler all 3

3. The compiler can deduce Another  but we forced Result  to be float
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Template Templates : More on deduction

Don't try to put the V  template inside the U  definition

    template <typename T, template <typename> typename U, typename V>
    void foo(T x, U<V> a) {
        std::cout << "1 " << typeid(T).name() << " " << typeid(U<V>).name() <<"\n";
    }
    
    template <typename T, template <typename> typename U>
    void foo(T x, U<T> a) {
      std::cout << "2 " << typeid(T).name() << " " << typeid(U<T>).name() <<"\n";
    }
    
    int main() {
        std::vector<double> vect;
        std::list<float> vecl;

        foo(4.5, vect);
        foo(4.5, vecl);
    }

2 d St6vectorIdSaIdEE  1 d NSt7__cxx114listIfSaIfEEE
Link to example

20

https://godbolt.org/z/j7ThG5fqa


Non type template arguments

Drop the typename  syntax and instead specify a concrete type

Values can be used as template arguments

bool, char, int, pointers and arbitrary types

Non type templates can also have default values

    template <int I>
    struct static_int {
        // a data value hardcoded for this type 
        static constexpr int value = I;
    };
    
    int main() {
        std::cout << static_int<5>::value;
        std::cout << static_int<6>::value;
    }

Be aware that static_int<5>  and static_int<6>  are not the same type

You could (for example) specialize another template using static_int<XXX>  types
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Default Template arguments for classes

    template <typename T=double, int Size=10>
    class my_container {};

    int main() {
        // x is a my_container of 10 doubles
        // <> required because container is templated and needs default types 
        my_container<> x; 

        // how does the compiler know what type the elements are?
        my_container<100> y; // ERROR

        // STL uses this approach for std::array (replaces double[N] syntax from C)
        std::array<double, Size> lovely;

        // Nicer than the old way (no size info carried)
        double deprecated[Size]
    }

Constructions like std::array<char, Size>  are very useful for things like

message buffers/headers

cache line padding

Small buffer Optimization
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Evaluation order

Template arguments are evaluated left to right

So we can extract types from the first and use them in the second, etc ...

C++ gets interesting and powerful when you allow types to expose other types

or (other) embedded types that have been specialized ... link

    template <typename T, typename U = typename T::type, int X = U::value>
    struct Order {};

    struct B {
        using type = B;
        static const int value = 100;
    };

    struct B2 {
        struct C {
            static const int value = 42;
        };
        using type = B2::C;
    };

    int main() {
        Order<B> x;
        Order<B2> y;
    }
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Evaluation order (wrong)

You can't use a derived type/value before it is defined

Swapping U/X breaks the compilation

    template <typename T, int X = U::value, typename U = typename T::type>
    struct Order {};

    struct B {
        using type = B;
        static const int value = 100;
    };

    int main() {
        Order<B> x;
    }

error: 'U' has not been declared

error: template argument 2 is invalid
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Alias templates

typedefs on steroids!

But they are still really just typedefs

      using integer_type = int;
      // same as
      typedef int integer_type;

But you can template them, which is really helpful

  // create an alias for a std::vector
  template <typename T> 
  using my_type = std::vector<T>;

  // and then later on
  my_type<double> x(100);    

Many template arguments and defaults are allowed

  // create an alias for an STL-like container (which is itself templated) 
  template <template <typename, typename> typename T, typename U,
          template <typename> typename Alloc = std::allocator>            
  using my_container = T<U, Alloc<U>>;

  my_container<std::vector, int> x(100); 

  // you can fill in (for example) an allocator to save the user doing it
  std::vector<int, std::allocator<int>>
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Alias templates (it's an alias, not a new type)

template <typename T>
using my_vec = std::vector<T, my_allocator<T>>;

template <typename T> // defintion 1
std::size_t size_of(my_vec<T> const& v) { return v.size(); }

template <typename T> // defintion 2 - this is the same as 1
std::size_t size_of(std::vector<T, my_allocator<T>> const& v) {
    return v.size();
}

error: redefinition of 'size_of' std::size_t size_of(std::vector<T, my_allocator<T>> const& v)
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Alias templates (it's an alias, not a new type)

  template <template <typename, typename> class V>  // 3
  std::size_t size_of(V<int, std::allocator<int>> const& v) { return v.size(); }

  template <template <typename> class V>            // 4
  std::size_t size_of(V<int> const&v) { return v.size(); }

  int main() {
      std::cout << size_of(my_vec<int>(23,0)) << std::endl; // uses 3, 4 doesn't match
  }

even though we've aliased the vector to a single template param, it really still has 2, using #4 we get

template template argument has different template parameters than its corresponding template template
parameter
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Default Template Arguments and Specializations

Which specialization applies

template <typename T=double, int Size=10>
struct my_container {};                   // always searched first

template <typename T>
struct my_container<T, 10> {};            // specialization 1

template <typename T>
struct my_container<T, 15> {};            // specialization 2

int main() {
    my_container<char, 10> z;             // uses specialization 1
    my_container<float,30> u;             // uses primary
    my_container<int,  15> v;             // uses specialization 2
    my_container<int>      y;             // uses specialization 1 (Size=10)
    my_container<>         x;             // primary (both default)
}
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Specialization - Trickier selection

    template <typename T, typename U = int>
    struct X {
        X() {
            std::cout << "Primary " << typeid(T).name() << " "  << typeid(U).name() << "\n";
        }
    };
    template <typename T>
    struct X<T, typename T::extra_type> {      
        X() {
            std::cout << "Specialization " << typeid(T).name() << " " << typeid(typename T::extra_type).name() << "\n";
        }
    };
    struct A { using value_type = int; };
    struct B { using extra_type = int; };
    struct C { using extra_type = float; };
    struct D { using extra_type = char; };
    int main() {
        X<A> a;         // uses primary - A::value_type not a match
        X<B> b;         // uses specialization - B::extra_type = int
        X<C> c;         // uses primary - C::extra_type not int
        X<B,char> b1;   // uses primary - B::extra_type not char
        X<D,char> d;    // uses specialization, D::extra_type = char
    }

Primary 1A  Specialization 1B  Primary 1C  Primary 1B  Specialization 1D

Reducing template params from 2 down to 1

use specialization If T::extra_type  matches U

Compiler explorer link : More advanced link
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SFINAE

Substitution Failure Is Not An Error

When looking for specialization some substitution may fail

It's the backbone of templated code

Without it, nothing would work (compile)

    // some generic struct that by default will use int
    template <typename T, typename U = int>
    struct X {};

    // a specialization for the struct *IF* it has an extra_type definition
    // When extra_type is not there, clearly this would be a compilation 'fail'
    template <typename T>
    struct X<T, typename T::extra_type> {};

When a substitution fails, the compiler ignores it and moves on

When it succeeds, it becomes a candidate for specialization/lookup

"concepts" and "constexpr if" can/will mostly do away with SFINAE

but tons of existing code still uses it
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SFINAE: `std::enable_if``

    template <typename T, typename Enable = void>
    struct A;

    template <typename T> // does not compile if is_same fails 
    struct A<T, typename std::enable_if<std::is_same<T, int>::value, void>::type> {
        A() { std::cout << "int!\n"; }
    };

    template <typename T> // // does not compile if is_same succeeds
    struct A<T, typename std::enable_if<!std::is_same<T, int>::value, void>::type> {
        A() { std::cout << "not int\n"; }
    };

    int main() {
        A<int> a1;
        A<float> a2;
    }

int!  not int

The failed version will not compile so the good version is selected - SFINAE

The void  template parameter is allowed to be an empty param (like void in a function)
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std::enable_if  : Possible implementations

Example 1:

Specialization for true defines type = T

Specialization for false doesn't exist, so type
doesn't either

    template<bool B, class T = void> 
    struct enable_if {};

    template<class T> 
    struct enable_if<true, T> { 
        using type = T;
    };
    

Example 2:

Specialization for true defines type = T

Entire class doesn't exist for false, but SFINAE
works (Not An Error)

We declared a class, but never instantiated
anything for false

    template<bool B, class T = void> 
    struct enable_if;

    template<class T> 
    struct enable_if<true, T> { 
        using type = T;
    };
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SFINAE: std::enable_if_t  + std::is_same_v  (less cruft)

    template <typename T, typename Enable = void>
    struct A;

    template <typename T> // does not compile if is_same fails 
    struct A<T, std::enable_if_t<std::is_same_v<T, int>, void>> {
        A() { std::cout << "int!\n"; }
    };

    template <typename T> // does not compile if is_same succeeds
    struct A<T, std::enable_if_t<!std::is_same_v<T, int>, void>> {
        A() { std::cout << "not int\n"; }
    };

    int main() {
        A<int> a1;
        A<float> a2;
    }

Just like the previous version, but slightly easier to understand

Cruft is a jargon word for anything that is left over, redundant and getting in the way. It is used
particularly for defective, superseded, useless, superfluous, or dysfunctional elements in computer
software

33



Class Template Type Deduction (C++17)

When instantiating a templated class, the
constructor can be used to deduce the type

Caution, if A in a header and type not specified,
you might not even know it's templated

    template <typename T>
    class A {
        T x;
      public:
        A(T x) : x{x} {}
    };

    int main() {
        A<int> x(3);    // c++ pre c++17
        A      y(3);    // A<int> is deduced via the constructor
        A      y(3.14); // A<double>  deduced
    }    

So what?

  template <typename F>
  struct B {
      F f; // a function that we want to store and call later
      B(F&& f) : f{std::move(f)} {}

      template <typename... Args>
      void call(Args&&... args) {
          f(std::forward<Args>(args)...);
      }
  };

  int main() {
      // explicitly declaring the type is messy and requires temporary variable
      auto f = [](int i, int j) {cout << i+j << "\n"};
      B<decltype(f)> a{std::move(f)};

      // CTAD allows a lambda to be passed directly in
      B b{[](int i, int j) {cout << i+j << "\n";}};
            
      a.call(3,4);
      b.call(3,4);
  }    

When writing algorithms that take functions/predicates and call functions in other templated parameters,
knowing the exact type can become very long winded / difficult
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Class Template Type Deduction (C++17)

It still works if there are extra
parameters/templates in the constructor

    template <typename T>
    class A {
        T x;
      public:
        template <typename U>
        A(T x, U, int) : x{x} {}
    };

    int main() {
        A<int>  x(3, 3.4, 7);  
        A       y(3, 3.4, 7); // A<int>
        A       z{y};         // A<int> copy
    }

Internally, the compiler is doing the heavy lifting
by deduction using the equivalent of auto-
generated (function template) helpers

    // Fictional function templated on <T,U> that returns the right type of A
    template <typename T , typename U>
    A<T> make_A(T a , U x, int y) {
        return A<T>{a, x, y};
    } 

    // Fictional function template for a copy constructor
    template <typename T>
    A<T> make_A(A<T> a) {
        return A<T>{a};
    } 

    int main() {
        A<int> x(3, 3.4, 7);         // explicit T, deduced U
        auto y = make_A(3, 3.4, 7);  // function template argument deduction 
        auto z = make_A(y);          // copy usnng the same mechanism
    }

    std::shared_ptr ptr(new int(10)); // <sigh>
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auto keyword

// forward declarations to keep compiler happy
struct thing1;
struct thing2 {
    double val{3.14};
    thing1 operator + (const thing1& t1) const;
};

struct thing1 {    
    double val{3.14};
    auto operator + (const thing2& t2) const
    {   
        return thing2{t2.val + val};
    }
};

thing1 thing2::operator + (const thing1& t1) const {
    return thing1{t1.val + val};
}

int main()
{
    thing1 t1{3.14};
    thing2 t2{6.28};
    auto r1 = t1 + t2;
    auto r2 = t2 + t1;
    std::cout << typeid(r1).name() << std::endl;
    std::cout << typeid(r2).name() << std::endl;
}

6thing2  6thing1

When functions return unexpected or difficult to guess types (especially types derived from operations on
other unknown types) - the auto keyword becomes essential
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Variadic Templates

A template parameter pack accepts zero or more arguments

Using ...  to express packs

    // a function tanking zero or more arguments 
    template <typename... Ts> // parameter pack (the types) 
    void foo(Ts... args) {}   // parameter pack (the actual values)

    // a class templated over zero or more types
    template <typename... Ts>
    class A {};

    template <typename... Ts>
    void foo(Ts... args) {  
        function(args...);  // pack-expansion = arg1, arg2, arg3 ...
        pattern(args)...;   // pack-expansion = pattern(arg1), pattern(arg2) ... 
        function(&args...); // pack-expansion = function(&arg1, &arg2, &arg3 ...); 
    }

Whatever the ...  appears after is the thing that is being repeated

37



Placement of the Variadic Dots ...

It may at first seem confusing where to put the ...  dots

The dots come after whatever is being repeated

Multiple typenames will be

template <typename... Ts>

The args types Ts  will be a list (derived from the args)

void foo(Ts... args) {}

The thing before the ...  will be expanded to make a list

  pattern(args)...;

:) If you see ...

  template <typename ...Ts>
  void foo(Ts ...args) {}
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Variadics - Recursion in action

    void pretty_print(std::ostream& s) {
        s <<"\n";
    }
    
    template <typename T, typename... Ts>
    void pretty_print(std::ostream& s, T first, Ts... values) {
        s << " {" << first << "} ";
        pretty_print(s, values...);
    }

    int main(){
        pretty_print(std::cout, 3.2, "hello", 42, "world");
    }

Gives {3.2} {hello} {42} {world}
Compile r Explorer link
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Perfect Forwarding

Preserves the type of the argument(s)

const stays const,

refs stay refs

all modifiers are preserved when forwarding the arguments

      template <typename... Args>
      void call(Args&&... args) {
          f(std::forward<Args>(args)...);
      }
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C++17 Fold Expressions

More elaborate pack-expansions (reductions on packs)

4 Flavours of Fold

Unary Right Fold

(pack op ...)

Unary Left Fold:=

(... op pack)

Binary Right Fold

(pack op ... op init)

Binary Left Fold

(init op ... op pack)

op may be one of the following (commonly overloaded) operators

* + - * / % ^ & | = < >

<< >> += -= *= /= %= ^= &= |= <<= >>= == != <= >= && ||

, .* ->*
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Unary Left Fold example

    template <typename... Args> 
    bool all(Args... args) {
        return (... && args);
    }
      
    int main()
    {
        bool b = all(true, true, true, false);
        std::cout << "Result: " << std::boolalpha << b << std::endl;
    }

Pre-add syntax: Left fold
(... + vals) => (((vals1 + vals2) + vals3) + vals4)

Post-add syntax: Right Fold
(vals + ...) => (vals1 + (vals2 + (vals3 + vals4))
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Pretty print using fold

    template<typename... Ts>
    void print1(Ts... vals) {
        (std::cout << ... << vals);
    }

Using a binary left fold

    template<typename... Ts>
    void print2(const char *delim, Ts... vals) {
        auto showdelim = [](const char *delim, const auto& param) -> const auto& {
          std::cout << delim;
          return param;
        };
        (std::cout << ... << showdelim(delim, vals) ) << std::endl ;
    }

print1 does the right thing, but how do you add a delimiter?

print2 is better, but prints an extra delimiter

we want thr right number of delimiters and handle an empty inpput

see fold example code for print3 link to full example
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Constexpr

The constexpr specifier declares that it is possible to evaluate the value of the function or variable at
compile time.

Such variables and functions can then be used where only compile time constant expressions are allowed
(provided that appropriate function arguments are given).

// A literal class
class conststr
{
    const char* p;
    std::size_t sz;
public:
    template<std::size_t N>
    constexpr conststr(const char(&a)[N]): p(a), sz(N - 1) {}
 
    constexpr char operator[](std::size_t n) const {
        return n < sz ? p[n] : throw std::out_of_range("");
    }
    constexpr std::size_t size() const { return sz; }
};

constexpr std::size_t countlower(conststr s, std::size_t n = 0,
                                             std::size_t c = 0)
{
    return n == s.size() ? c :
        'a' <= s[n] && s[n] <= 'z' ? countlower(s, n + 1, c + 1)
                                   : countlower(s, n + 1, c);
}

std::cout << "Number lowercase letters in \"Hello, world!\" is ";
constN<countlower("Hello, world!")> out2; 
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if constexpr

A nifty feature that allows you to get rid of some specializations

    template<int  N>
    constexpr int fibonacci() {return fibonacci<N-1>() + fibonacci<N-2>(); }
    template<>
    constexpr int fibonacci<1>() { return 1; }
    template<>
    constexpr int fibonacci<0>() { return 0; }

    template<int N>
    constexpr int fibonacci()
    {
        if constexpr (N>=2)
            return fibonacci<N-1>() + fibonacci<N-2>();
        else
            return N;
    }

Much simpler on the compiler, no recursive instantiations of templates

Code is directly evaluated at compile time
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Classes and Meta-Programming

Kinds of members

[Static] Function

[Static] Data

Constexpr function

Static const/Constexpr data

Type (nested type names)

Meta-programming is manipulating types

And static const/constexpr values

The main mechanism is using class templates

Single applications rarely need TMP

Useful when building abstraction layers

E.g., header-only libraries

ODL and headers (One definition Rule)
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Step Back

Type members are possible

Access like static members

X::type_t<U>

Visibility rules as normal

Constexpr variables visible at translation unit level

inline constexpr is your friend for const vars etc

    class X {
     /*public/private/*/protected:
        using type = ...;

        template <typename T, ...>
        using type_t = ...;

        static const int a = 10;
        static constexpr int b =10;
        inline constexpr int c = 10;

        X(...);

        void member(...);
    };
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A simple example

A complex way to fill a register with a value

  movl $120, %esi

Compiler explorer link

    template <int N>
    struct factorial {
        static constexpr int value = N * factorial<N-1>::value;
    };

    template <>
    struct factorial<1> {
        static constexpr int value=1;
    };

    int main() {
        std::cout << factorial<5>::value << "\n"; 
    }

NB. use -ftemplate-depth=N to increase recursive template instantiation depth
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A Convention for TMP

TMP is still an “accident” in C++

Boost::MPL conventions partially adopted by ISO C++

A meta-function returning a type has a public ::type

A meta-function returning a value has a public ::value

Usually/Frequently/Often both

      template <Arguments…>
      struct meta_function {
          using type = ... ;
          static constexpr ... value = ... ;
          using result_type = ... ;
          using param_type = ... ; 
      };

Type members with arbitrary names are called traits

Often small helper utilities like is_something<T>
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std::integral_constant

A type for each number

    template<class T, T v>
    struct integral_constant {
        using value_type = T ;
        static constexpr value_type value = v;
    };

    // use :value to access the underlying content 
    static_assert(integral_constant<int, 7>::value == 7, “Error”)
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Building abstractions: std::rank example

Type of T[3][4]  is (T[3])[4]

    template<class T> // Primary
    struct rank : public integral_constant<size_t, 0> {};

    template<class T, size_t N> // Specialize for an array type
    struct rank<T[N]>           // (int[3])[4] => T[4] where T = int[3]
        : public integral_constant<size_t, rank<T>::value + 1> {};

    template<class T>
    struct rank<T[]>
        : public integral_constant<size_t, rank<T>::value + 1> {}; 

    int main() {
        int x[5][4][7][2];
        std::cout << rank<decltype(x)>::value << std::endl; 
    }

Gives output of 4  Link to example
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An Example with Types: If on Types

If (boolean value) then type1, else type2

    template <bool Pred, typename T1, typename T2>
    struct select_first {
        using type = T2; // Primary (false)
    };

    template <typename T1, typename T2>
    struct select_first<true, T1, T2> {
        using type = T1; // Specialization for true
    };

But why do we need this?

One building block for more complex meta-programming functions/features
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One (Maybe) Silly Example

    template <bool WithRef>
    typename select_first<WithRef, int&, int>::type
    with_ref (typename select_first<WithRef, int&, int>::type x) {
        x += 1;
        return x;
    }

    int main() {
        int x = 1;
        std::cout << with_ref<false>(x) << " " << x << std::endl;
        std::cout << with_ref<true>(x)  << " " << x << std::endl;
    }

Gives 2 1  2 2  Link

Note use of typename  for the return type of the function

the compiler needs this to warn it that the type isn't known yet

you see this everywhere in TMP
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An example 1/6

my_container is not a template

my_container is not flexible

    struct my_container {
        using value_t = int;
        using container_t = vector<value_t>;
        container_t C;

        my_container(size_t s) : C(s) {}
    };
      
    my_container my_c(42);
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An example 2/6

Customizing the basics

    template <typename VT>
    struct my_container {
        using value_t = VT;
        using container_t = vector<value_t>;
        container_t C;

        my_container(size_t s) : C(s) {}
    };

    my_container my_c<int>(42);
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An example 3/6

Customizing the allocator

    template <typename VT, typename Allocator = allocator<VT>>
    struct my_container {
        using value_t = VT;
        using container_t = vector<value_t, Allocator>;
        container_t C;

        my_container(size_t s) : C(s) {}
    };

      
    my_container<int> my_c(42);
    my_container<int, std::allocator<int>> my_c(42);
    my_container<int, std::allocator<double>> my_c(42);
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An example 4/6 – Template Template Arguments

Avoiding redundancies

    template <typename VT, 
              template <typename> class Allocator = allocator>
    struct my_container {
        using value_t = VT;
        using container_t = vector<value_t, Allocator<value_t>>;
        container_t C;

        my_container(size_t s) : C(s) {}
    };
      
    my_container<int> my_c(42);
    my_container<int, std::allocator> my_c2(42);
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An example 5/6

Being completely explicit

    template <typename Container>
    struct my_container {
        using value_t = typename Container::value_type;
        using container_t = Container;
        container_t C;

        my_container(size_t s) : C(s) {}
    };

    my_container<vector<int, allocator<int>>> my_c(42);
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An example 6/6

Customizing the whole

    template <typename VT, 
              template <typename, typename> class CT = vector,
              template <typename> class Allocator = allocator>
    struct my_container {
        using value_t = VT;
        using container_t = CT<value_t, Allocator<value_t>>;
        container_t C;

        my_container(size_t s) : C(s) {}
    };

    my_container<int> my_c(42);
    my_container<int, vector> my_c2(42);
    my_container<int, vector, allocator> my_c3(42);
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Extra Example : demangle_helper

Here's an example of some of the constructs in use

Worked example if time permits

It uses a compiler extension to print types nicely

Link to Compiler Explorer

60

https://godbolt.org/z/1MMjGjz8z


Concluding remarks

Whenever you write the same basic code structure multiple times

Can you template it?

Separation of algorithm/data

Example: CPU version / GPU version

Basically the same, but with some tweaks

Abstract most out, and specialize for the special bits

Traits abstract out small elements of the logic

Many small helper types  that handle typing sub-tasks

Zero/Low cost (at least at run-time) abstractions

Meta-programming allows library developers to create highly tuned code

Manipulating types instead of values

Fusion of kernels, Unrolling/reordering of loops

Specializations for types/data layouts
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