+&@_ CSCS S
\' ' Centro Svizzero di Calcolo Scientifico E'" Z U r I Ch

\' Swiss National Supercomputing Centre

C++ Course

Generic Programming Part |1 : Templates (+ some other stuff thrown in)

John Biddiscombe / Mauro Bianco

Generic programming

Wikipedia: "Generic programming is a style of computer programming in which algorithms are written in
terms of data types to-be-specified-later that are then instantiated when needed for specific types provided
as parameters.”

Us:

e Codere-use
o (Design) Patterns
e Abstraction of algorithms and data
o Look no further than the STL (it isamazing)
o API
o Standardize the API for algorithms/operations
e Use of operators and predicates

o Supplying functions to algorithms (as well as data)

\?\o:-o CSCS 1 ETHziirich

Functions and Classes (a reminder)

e A functionis defined as return type, name, and arguments

o Functions exist as code that can be linked to and called/inlined

int add(int x, int y) { return x + y; }
int main() { add(65, 35); }

e A classis defined as a name after class (or struct)

o Definition contains type, data and function members

class namel; // by default members are private
struct name2; // public

class namel {
// insert more interesting things here ...
int thing1;
int func2(float) { ... };
’
int main() {
namel x; // here we instantiate a variable of type 'namel’

}

W@ cscs)

ETH:zurich

Function templates - Instantiation

e A function template is not a function
o |t needs to be instantiated
o Substitute type text into the template argument

o Trivial link

template <typename T>
void foo(T x) {
std::cout << x << "\n":

)

}

int main() {
foo<int>(65);
foo<char>(65) ;

foo<double>(3.1415);
foo<std::string>(std::string("string"));

auto *p1 = &foo; // No! this doesn’'t exist
auto *p2 = &foo<int>; // Yes - address of a specific instantiation

1¥,® CSCs 3 ETHzurich

https://godbolt.org/z/n77b5MGqa

Regular Function Overloading - Note

e Overloading functions is quite normal, regardless of templates
e |t's a form of specialization/customization of the function itself
e Note: Functions can't be overloaded based on return type alone

o introduces ambiguities (+ problems with return type conversions)

void functioni1(int x);

void functionl(float x);

void functioni(int x, float y, std::string z);

int functionl1(int x) {} // No!

error:. functions that differ only in their return type cannot be overloaded

struct thingl {
thing2 functionl(int x);
const thing2 functionl1(int x) const;

s

e a const modifier on member function changes the function signature (type)

o so the changein return type is ok

\3\0:0 CSCS 4 ETHziirich

Template Function Overloading - Deduction

e Among the options the most specialized is chosen

o Introduce the term "ADL" - Argument Dependent Lookup (More later)

template <typename T>
void foo(T x) {

std::cout << x << ", " << typeid(x).name

'

void foo(std::string const& x) {
std::cout << "ooh! a string! " << x <<

}

int main() {
foo<int>(65); // explicit
foo<char>(65); // explicit
foo(3.14159); // Argument
foo<double>(3.14159); // explicit
foo<double>(3); // explicit

foo(std::string("yay \o/")); // Argument

() << "\n’;

"\n";

(int)

(char)

Deduction (double)

(double)

(double - automatic type conversion)
Deduction (string)

695,

i A, ¢ 3.14159, d 3.14159, d 3, d

&% cscs

@

ooh! a string! yay \o/

ETH:zurich

Order Matters

e Be careful when mixing explicit and deduced arguments

o explicit types must appear where expected otherwise substitution fails

template <typename T, typename U>
void foo(T, U) {}

int main() {
foo<std::string, double>("hello", 4.5); // ok - string double fits
foo<std::string>("hello", 4.5); // ok - string came first
foo<double>("hello", 4.5); // not ok, can't deduce "std::string” in 71st place

cannot convert '"hello"' (type 'const char [6]') to type 'double’

e Deduction of types doesn't allow for arbitrary rearranging of template positions

e Always watch out for automatic type conversions const char [6] -> std::string

@

ETH:zurich

Template Argument Deduction

e To instantiate a template all the types must be known

e Sometimes/Usually/Often/Mostly they can be deduced

template <typename To, typename From> template <typename From, typename To>

To convertl1(From f) { To convert2(From f) {
std::cout << typeid(To).name() << " " std::cout << typeid(To).name() << " "

<< typeid(From).name() << "\n"; << typeid(From).name() << "\n";

return static_cast<To>(f); return static_cast<To>(f);

' }

void g1(double d) { void g2(double d) {
// To = int, deduced From = double // To = int, From = double
int i = converti<int>(d); int i = convert2<double, int>(d);
// To = char, deduced From = double // To = char, From = double
char ¢ = convertil<char>(d); char ¢ = convert2<double, char>(d);
// deduced To = int, deduced From = float // To = char, From = float
int(*ptr)(float) = convertl; int(*ptr)(float) = convert2;
ptr(d); ptr(d);

b }

idcd i f Linktoexample idcd if

1¥,® CSCs 7 ETHzurich

https://godbolt.org/z/coK4GYbcY

Note : Automatic Type Conversion and Deduction

struct thingl {
double some_value = 1.0;
operator bool() const { return some_value > 0.1; }
b
template <typename T>
void print_thing(const T &t) {

std::cout << "Overload T " << t << " (" << t.some_value << ")" << "\n";

b
void print_thing(bool t) {
std::cout << "Overload B " << std::boolalpha << t << "\n";
'
int main() {
thingl t1{60.05};
print_thing(t1); // uses template - no overload for type thingl
print_thing(static_cast<bool>(t1)); // uses overload - specialization for bool

Overload T 6 (0.085) Overload B false

e The << operator picks the bool conversion, but the template doesn't (more specialized)

W@ cscs 3

ETH:zurich

Function Lookup Based on Argument (ADL) #1 a)

e Which version of a function should be used when there's a choice

o Argument Dependent Lookup. In this case, the argument types

struct thingl {
double some_value = 1.0;
operator bool() const { return some_value > 0.1; }
friend std::ostream & operator << (std::ostream &os, const thingl &t) {
0s << t.some_value; return os;

¥
s

int main() {
thing1 t1{3.13};
std::cout << t1 << " " << static_cast<bool>(t1) << std::endl;

e Thecall to std::cout << t1 is essentially translated to operator << (ostream, thing1)

\g; CSCS o ETHziirich

Function Lookup Based on Argument (ADL) #1 b)

e \WWe can move the stream operator out of the struct if we want

struct thingl {
double some_value = 1.0;
operator bool() const { return some_value > 0.1; }

}s

std::ostream & operator << (std::ostream &os, const thingl &t) {
0s << t.some_value; return os;

}

int main() {
thing1 t1{3.13};
std::cout << t1 << " " << static_cast<bool>(t1) << std::endl;

e \We must drop the friend keyword, But ...

o what happens if we change struct to class
"double thing1::some_value' 1is private within this context

\3\0:0 CSCS 10 ETHziirich

ADL - Namespace usage

e The namespace of t1, t2 are searched to find the right function

o just like when you call std::cout << std::string('stuff')

namespace one { namespace two {
struct thingl { struct thingl {
double some_value = 1.0; double some_value = 1.0;
operator bool() const { return some_value > 0.1; } operator bool() const { return some_value > 0.1; }
}i }i
template <typename T> void print_thing(const T &t) { template <typename T> void print_thing(const T &t) {
std::cout << "one Overload T " << t std::cout << "two Overload T " << t
<< " (" << t.some_value << ")" << "\n"; << " (" << t.some_value << ")" << "\n";
} }
} Y
int main() one Overload T 6 (©.65) two Overload T © (0.07)

one::thing1 t1{0.05};
two::thingl t2{6.07};
print_thing(t1);
print_thing(t2);

Link to longer (qualified) version

}

1¥,® CSCs 11 ETHzurich

https://godbolt.org/z/1vdTbsYYz

Class templates

e A class templateis not a class

o |t needs to be instantiated, only then can an object of that type exist

template <typename T>
class thing {
using type = T;
T member;
std: :unique_ptr<T> other;
T operator()(T a, T b) const {...}
i
int main() {
thing<int> x;
thing<double> y;
}

e The template parameter may be used in any of the members or functions declared in the class
o Function return type
o one or more parameters used in a member function

o used in a typedef, or declaration of another type

\3\0:0 CSCS 19 ETHziirich

Partial specialization

e As mentioned - for template functions - these are really just overloads

e The more specialized version is chosen when encountered

template <typename T, typename U>
struct X {}; // 1 (Primary template)

template <typename T>
struct X<T, int> {}; // 2 (Specialization of arg2 / U)

template <typename U>
struct X<float, U> {}: // 3 (Specialization of argl / T)

int main() {
X<char, double> a; // choose 1
X<char, int> b; // choose 2
X<float, double> c; // choose 3
X<float, int> d: // all 3 match. what to do ?7?7?

error: ambiguous partial specializations of 'X<float, int>'

1¥,® CSCs 13 ETHzurich

Full specialization

template <typename T, typename U>
struct X {};

template <typename T>
struct X<T, int> {};

template <typename U>
struct X<float, U> {};

template <>
struct X<float, int> {};

int main() {
X<char, double> a; // choose 1
X<char, int> b; // choose 2
X<float, double> c¢; // choose 3
X<float, int> d; // choose 4

// 1 (Primary template)

// 2 (Specialization of arg2 / U)

// 3 (Specialization of argl / T)

// this "template <>" is important
// 4 (Full Specialization)

e Full specialization is more specialized, so it is picked and resolves the problem

&9 @® CSCS

S 4

14

ETH:zurich

Pattern Matching #1

template <typename T, typename U>
struct X {};

struct X<W, X<T,Us>> {}:

template <typename T>
void foo(X<T,T>) {}

int main() {
X<int, X<int, float>> a;
X<int, X<char, X<int, void>>> b;
X<double, double> c;
foo(c);
foo(b) ;

// Primary

template <typename W, typename T, typename U>

// Specialization 1

// Function 1

// specialization<int, primary>
// specialization<int, primary>
// primary

// ok calls Function 1

// no :(does not match

candidate template ignored: deduced

("int' vs. 'X<char, X<int, void>>")

N A g CSCS

conflicting types for parameter
-> void foo(X<T,T>) {}

15

ITI

ETH:zurich

Pattern Matching #2

template <typename T, typename U>
struct X {}; // Primary

template <typename W, typename T, typename U>
struct X<W, X<T,Us>> {};: // Specialization 1

template <typename T>
void foo(X<T,T>) {} // Function 1

template <typename T, typename U>
void foo(X<T,U>) {} // Function 2

int main() A
X<int, X<int, float>> a; // specialization<int, primary>
X<int, X<char, X<int, void>>> b; // specialization<int, primary>
X<double, double> c;
foo(c); // ok F1
foo(b) ; // yay \o/ F2

e Now the U parameter is deduced to be the full X<char, X<int, void>>

¥% cscs 1

ETH:zurich

CRTP (Curiously Recurring Template Pattern) : static polymorphism

template<typename Derived>
class controller_base {
template <typename... Args>
bool initialize(int i, bool b, Args... args) {
// lots of boilerplate code here
return static_cast<Derived*>(this)->initialize_derived(i, b, std::forward<Args>(args)...);

}
}

class controller : public controller_base<controller> {
void initialize_derived(int i, bool b, std::string const& s) {
// some special init for this type of controller

}
}

int main() {
controller c;
c.initialize(42, true, "some stuff");

e Polymorphism allows a call to be directed to the intended type
o shape->circle/square/blob - inheritance - traditionally uses VMT lookup

e CRTP creates an "interface" that can be customized by derived types

o routing made at compile time - because types are already known

1¥,® CSCs 17 ETHzurich

Default template arguments

e Template arguments can be defaulted
o From C++11 this is also possible on function templates

e Default args can only be to the right the arguments on the right if not deduced

template <typename T, typename Result=char>
Result foo(T x) A

return static_cast<Result>(x);

'
int main() {
std::cout << foo(65) << "\n"; // T deduced to be int, Result char
std::cout << foo<int>(65) << "\n"; // T explicitly int, Result char
std::cout << foo<int, int>(65.3) << "\n"; // T and Result, both explicitly int
'
A A 65

e Note that because we used static_cast<Result>(x) the double 65.3 was converted to int without error

¥% cscs 18

ETH:zurich

Default args go on the right unless they can be deduced

template <typename T, typename Result=char, typename Another>

Result foo(T x, Another a) {
std::cout << typeid(T).name() << " " << typeid(Another).name() <<" ";
return static_cast<Result>(x);

}

int main() {
// T deduced as int, Another deduced as double
std::cout << foo(65, 3.5) << "\n"; // 1 Result = char
// but like this we explicitly state
std::cout << foo<int, char, float>(65, 3.5) << "\n"; // 2 Result = char
// in this case Another is deduced as double
std::cout << foo<int, float>(65, 3.5) << "\n"; // 3 Result = float (careful)

output: i d A i f A i d 65

1. The compiler knows T and Another soitis ok with defaulting Result

2. We tell the compiler all 3

3. The compiler can deduce Another but we forced Result to be float

1¥,® CSCs 19 ETHzurich

Template Templates : More on deduction

e Don't try to put the v template inside the U definition

template <typename T, template <typename> typename U, typename V>
void foo(T x, U<V> a) {

std::cout << "1 " << typeid(T).name() << " " << typeid(U<V>).name() <<"\n";
}

template <typename T, template <typename> typename U>
void foo(T x, U<T> a) {

std::cout << "2 " << typeid(T).name() << " " << typeid(U<T>).name() <<"\n";
}

int main() {
std: :vector<double> vect;
std::list<float> vecl;

foo(4.5, vect);
foo(4.5, vecl);

2 d StévectorIdSaIdEE 1 d NSt7__cxx1141listIfSalIfEEE
Link to example

\g; CSCS 20 ETHziirich

https://godbolt.org/z/j7ThG5fqa

Non type template arguments

e Drop the typename syntax and instead specify a concrete type
e Values can be used as template arguments
o bool, char, int, pointers and arbitrary types

e Non type templates can also have default values

template <int I>

struct static_int {
// a data value hardcoded for this type
static constexpr int value = I;

'

int main() {
std::cout << static_int<5>::value;
std::cout << static_int<6>::value;

e Be aware that static_int<5> and static_int<6> are not the same type

e You could (for example) specialize another template using static_int<XXX> types

\3\0:0 CSCS 21 ETHziirich

Default Template arguments for classes

template <typename T=double, int Size=10>
class my_container {};

int main() A
// x 1s a my_container of 16 doubles
// <> required because container is templated and needs default types
my_container<> X;

// how does the compiler know what type the elements are?
my_container<100> y; // ERROR

// STL uses this approach for std::array (replaces double[N] syntax from C)
std::array<double, Size> lovely;

// Nicer than the old way (no size info carried)
double deprecated[Size]

e Constructions like std::array<char, Size> are very useful for things like
o message buffers/headers
o cache line padding

o Small buffer Optimization

1¥,® CSCs 22 ETHzurich

Evaluation order

e Template arguments are evaluated left to right
o So we can extract types from the first and use them in the second, etc ...
e C++ gets interesting and powerful when you allow types to expose other types

o or (other) embedded types that have been specialized ... link

template <typename T, typename U
struct Order {};

typename T::type, int X = U::value>

struct B {
using type = B;
static const int value = 100;

}i
struct B2 {
struct C {
static const int value = 42;
}i
using type = B2::C;
}i

int main() A
Order x;
Order<B2> vy;

\:\0‘0 CSCS 23

ETH:zurich

https://godbolt.org/z/6TYzWbxhd

Evaluation order (wrong)

e You can't use a derived type/value before it is defined

e Swapping U/X breaks the compilation

template <typename T, int X = U::value, typename U = typename T::type>
struct Order {};

struct B {
using type = B;
static const int value = 100;

'

int main() {
Order x;

}

error: 'U" has not been declared

error:. template argument 2 is invalid

@2 cscs 24

ETH:zurich

Alias templates

e typedefs on steroids! e But you can template them, which is really helpful

o But they are still really just typedefs

// create an alias for a std::vector

. . _ template <typename T>
UETne AeEgRr_type = Wik, using my_type = std::vector<T>;
// same as
typedef int integer_type; // and then later on

my_type<double> x(160);

e Many template arguments and defaults are allowed

// create an alias for an STL-1ike container (which is itself templated)

template <template <typename, typename> typename T, typename U,
template <typename> typename Alloc = std::allocator>

using my_container = T<U, Alloc<U>>;

my_container<std::vector, int> x(160);

// you can fill in (for example) an allocator to save the user doing it
std: :vector<int, std::allocator<int>>

1¥,® CSCs 25 ETHzurich

Alias templates (it's an alias, not a new type)

template <typename T>
using my_vec = std::vector<T, my_allocator<T>>;

template <typename T> // defintion 1
std::size_t size_of(my_vec<T> const& v) { return v.size(); }

template <typename T> // defintion 2 - this is the same as 1
std::size_t size_of(std::vector<T, my_allocator<T>> const& v) {
return v.size();

}

error: redefinition of 'size_of' std::size_t size_of(std::vector<T, my_allocator<T>> const& v)

1¥,® CSCs 26 ETHzurich

Alias templates (it's an alias, not a new type)

template <template <typename, typename> class V> // 3
std::size_t size_of(V<int, std::allocator<int>> const& v) { return v.size(); }

template <template <typename> class V> // 4
std::size_t size_of(V<int> const&v) { return v.size(); }

int main() {
std::cout << size_of(my_vec<int>(23,0)) << std::endl; // uses 3, 4 doesn't match

}

e even though we've aliased the vector to a single template param, it really still has 2, using #4 we get

template template argument has different template parameters than its corresponding template template
parameter

1¥,® CSCs 27 ETHzurich

Default Template Arguments and Specializations

e Which specialization applies

template <typename T=double, int Size=10>
struct my_container {}; // always searched first

template <typename T>
struct my_container<T, 10> {}; // specialization 1

template <typename T>
struct my_container<T, 15> {}; // specialization 2

int main() {

my_container<char, 10> z; // uses specialization 1
my_container<float, 30> u; // uses primary

my_container<int, 15> v; // uses specialization 2
my_container<int> Y; // uses specialization 1 (Size=10)
my_container<> X; // primary (both default)

1¥,® CSCs 28 ETHzurich

Specialization - Trickier selection

template <typename T, typename U = int>

struct X {
X() |
std::cout << "Primary " << typeid(T).name() << " " << typeid(U).name() << "\n";
}
}

template <typename T>
struct X<T, typename T::extra_type> {

X() A
std::cout << "Specialization " << typeid(T).name() << " " << typeid(typename T::extra_type).name() <<

}

}i

struct A { using value_type = int; };

struct B { using extra_type = int; };

struct C { using extra_type = float; };

struct D { using extra_type = char; };

int main() {
X<A> a; // uses primary - A::value_type not a match
X b; // uses specialization - B::extra_type = int
X<C> c; // uses primary - C::extra_type not int
X<B,char> b1; // uses primary - B::extra_type not char
X<D,char> d; // uses specialization, D::extra_type = char

}

ll\nll ;

Primary 1A Specialization 1B Primary 1C Primary 1B Specialization 1D

e Reducing template params from 2 down to 1
e use specialization If T::extra_type matches U

e Compiler explorer link : More advanced link

\:\0‘0 CSCS 29

ETH:zurich

https://godbolt.org/z/nz7n67roe
https://godbolt.org/z/bovaf1P8T

SFINAE

e Substitution Failure Is Not An Error
o When looking for specialization some substitution may fail
= |[t's the backbone of templated code

= Without it, nothing would work (compile)

// some generic struct that by default will use int
template <typename T, typename U = int>
struct X {};

// a specialization for the struct *IF* it has an extra_type definition

// When extra_type is not there, clearly this would be a compilation 'fail’
template <typename T>

struct X<T, typename T::extra_type> {};

e When a substitution fails, the compiler ignores it and moves on
e When it succeeds, it becomes a candidate for specialization/lookup
e "concepts" and "constexpr if" can/will mostly do away with SFINAE

o but tons of existing code still uses it

\:\0‘0 CSCS 30

ETH:zurich

SFINAE: std::enable if

template <typename T, typename Enable = void>
struct A;

template <typename T> // does not compile if is_same fails

struct A<T, typename std::enable_if<std::is_same<T, int>::value, void>::type> {
A() { std::cout << "int!\n"; }

}s

template <typename T> // // does not compile if is_same succeeds

struct A<T, typename std::enable_if<!std::is_same<T, int>::value, void>::type> {
A() { std::cout << "not int\n"; }

b

int main() {
A<int> ail;
A<float> a2;

int! not int
e The failed version will not compile so the good version is selected - SFINAE

e The void template parameter is allowed to be an empty param (like void in a function)

W@ cscs 31

ETH:zurich

std: :enable_if : Possible implementations

e Example 1:

o Specialization for true defines type = T

o Specialization for false doesn't exist, so type
doesn't either

template<bool B, class T = void>
struct enable_if {};

template<class TI>
struct enable_if<true, T> {
using type = T;

'

&% cscs

@

32

e Example 2:

o Specialization for true defines type = T

o Entire class doesn't exist for false, but SFINAE
works (Not An Error)

= We declared a class, but never instantiated
anything for false

template<bool B, class T = void>
struct enable_if;

template<class T>
struct enable_if<true, T> {
using type = T;

s

ETH:zurich

SFINAE: std::enable_if_t + std::is_same_v (less cruft)

template <typename T, typename Enable = void>
struct A;

template <typename T> // does not compile if is_same fails

struct A<T, std::enable_if_t<std::is_same_v<T, int>, void>> {
A() { std::cout << "int!\n"; }

}i

template <typename T> // does not compile if is_same succeeds

struct A<T, std::enable_if_t<!std::is_same_v<T, int>, void>> {
A() { std::cout << "not int\n"; }

I s

int main() {
A<int> ail;
A<float> a2;

e Just like the previous version, but slightly easier to understand

o Cruftis ajargon word for anything that is left over, redundant and getting in the way. It is used
particularly for defective, superseded, useless, superfluous, or dysfunctional elements in computer
software

1¥,® CSCs 33 ETHzurich

Class Template Type Deduction (C++17)

e When instantiating a templated class, the
constructor can be used to deduce the type

e Caution, if A in a header and type not specified,
you might not even know it's templated

e So what?

template <typename T>

class A {
T x;
public:
AT x) : x{x} {}
b
int main() {
A<int> x(3); // c++ pre c++17
A y(3); // A<int> 1is deduced via the constructor
A y(3.14); // A<double> deduced

template <typename F>

struct B {
F f; // a function that we want to store and call later
B(F&& f) : f{std::move(f)} {}

template <typename... Args>

void call(Args&&... args) {
f(std::forward<Args>(args)...);

}

int main() {
// explicitly declaring the type is messy and requires temporary variable
auto f = [](int i, int j) {cout << i+j << "\n"};
B<decltype(f)> a{std::move(f)};

// CTAD allows a lambda to be passed directly in
B b{[](int i, int j) {cout << i+j << "\n";}};

a.call(3,4);
b.call(3,4);

e When writing algorithms that take functions/predicates and call functions in other templated parameters,
knowing the exact type can become very long winded / difficult

N A g CSCS

ETH:zurich

Class Template Type Deduction (C++17)

o |tstill works if there are extra e [nternally, the compiler is doing the heavy lifting
parameters/templates in the constructor by deduction using the equivalent of auto-
generated (function template) helpers

template <typename T>
class A { // Fictional function templated on <T,U> that returns the right type of A

T X template <typename T , typename U>

. . A<T> make_A(T a , U x, int y) {
public: return A<T>{a, X, y};

template <typename U> }

A(T x, U, int) : x{x} {}
}, // Fictional function template for a copy constructor

! template <typename T>
A<T> make_A(A<T> a) {

int main() { return A<T>{a};

A<int> x(3, 3.4, 7); }

A y(3, 3.4, 7); // A<int> int main() {

A z{y}; // A<int> copy A<int> x(3, 3.4, 7); // expligit T, deduced U .

auto y = make_A(3, 3.4, 7); // function template argument deduction
} auto z = make_A(y); // copy usnng the same mechanism
b

std::shared_ptr ptr(new int(10)); // <sigh>

1¥,® CSCs 35 ETHzurich

auto keyword

// forward declarations to keep compiler happy
struct thingl;
struct thing2 {

double val{3.14};

thing1 operator + (const thing1& t1) const;
b

struct thingl {
double val{3.14};
auto operator + (const thing2& t2) const
{
return thing2{t2.val + val};
}
b ¢

thing1 thing2::operator + (const thing1& t1) const {
return thing1{t1.val + val};

}

int main()

{

thing1l t1{3.14};

thing2 t2{6.28};

auto r1 = t1 + t2;

auto r2 = t2 + t1;

std::cout << typeid(r1).name() << std::endl;
std::cout << typeid(r2).name() << std::endl;

6thing2 6thingi

e When functions return unexpected or difficult to guess types (especially types derived from operations on
other unknown types) - the auto keyword becomes essential

N A g CSCS

36

ETH:zurich

Variadic Templates

e A template parameter pack accepts zero or more arguments

o Using ... toexpress packs

// a function tanking zero or more arguments
template <typename... Ts> // parameter pack (the types)
void foo(Ts... args) {} // parameter pack (the actual values)

// a class templated over zero or more types

template <typename... Ts>

class A {};

template <typename... Ts>

void foo(Ts... args) {
function(args...); // pack-expansion = argl, arg2, arg3 ...
pattern(args)...; // pack-expansion = pattern(argl), pattern(arg2) ...
function(&args...); // pack-expansion = function(&argl, &arg2, &arg3 ...);

'

e Whatever the ... appears after is the thing that is being repeated

1¥,® CSCs 37 ETHzurich

Placement of the Variadic Dots ...

e |t may at first seem confusing where to put the ... dots
e The dots come after whatever is being repeated

o Multiple typenames will be

template <typename... Ts>

o The args types Ts will be a list (derived from the args)

void foo(Ts... args) {}

o The thing before the ... will be expanded to make a list

pattern(args)...;

e :) If you see ...

template <typename ...Ts>
void foo(Ts ...args) {}

\g; CSCS 18 ETHziirich

Variadics - Recursion in action

void pretty_print(std::ostream& s) {
S <<Il\nll;

}

template <typename T, typename... Ts>

void pretty_print(std::ostream& s, T first, Ts... values) {
s << " {" << first << "} ";
pretty_print(s, values...);

}

int main(){
pretty_print(std::cout, 3.2, "hello", 42, "world");

}

e Gives {3.2} {hello} {42} {world}
Compile r Explorer link

\3\0:0 CSCS 39 ETHziirich

https://godbolt.org/z/YdrPnn94x

Perfect Forwarding

e Preserves the type of the argument(s)
e const stays const,
o refs stay refs

e all modifiers are preserved when forwarding the arguments

template <typename... Args>

void call(Args&&... args) {
f(std::forward<Args>(args)...);

}

\3\0:0 CSCS 40 ETHziirich

C++17 Fold Expressions

e More elaborate pack-expansions (reductions on packs)

e 4 Flavours of Fold

&% cscs

S 4

o Unary Right Fold

O

O

(pack op ..

)

Unary Left Fold:=

(...

op pack)

Binary Right Fold

(pack op ...

Binary Left Fold

op may be one of the following (commonly overloaded) operators

(init op ...

op init)

op pack)

m ok 4+ - % [/ % AR | =< >

B << >> +=

)

Lk ->%

*

41

ETH:zurich

Unary Left Fold example

template <typename... Args>
bool all(Args... args) {
return (... && args);

}

int main()
{
bool b = all(true, true, true, false);
std::cout << "Result: " << std::boolalpha << b << std::endl;

e Pre-add syntax: Left fold

(... + vals) => (((vals1l + vals2) + vals3) + vals4)

e Post-add syntax: Right Fold

(vals + ...) => (vals1l + (vals2 + (vals3 + vals4))

\3\0:0 cscs 49 ETHziirich

Pretty print using fold

template<typename... Ts>

void print1(Ts... vals) {
(std::cout << ... << vals);

Y

e Using a binary left fold

template<typename... Ts>
void print2(const char *delim, Ts... vals) {
auto showdelim = [](const char *delim, const auto& param) -> const auto& {

std: :cout << delim;
return param;

s

(std::cout << ... << showdelim(delim, vals)) << std::endl ;

e printl does the right thing, but how do you add a delimiter?
e print2 is better, but prints an extra delimiter
e we want thr right number of delimiters and handle an empty inpput

e see fold example code for print3 link to full example

¥% cscs 42

ETH:zurich

https://godbolt.org/z/hbvh78381

Constexpr

e The constexpr specifier declares that it is possible to evaluate the value of the function or variable at
compile time.

e Such variables and functions can then be used where only compile time constant expressions are allowed
(provided that appropriate function arguments are given).

// A literal class constexpr std::size_t countlower(conststr s, std::size_t n = 0,
class conststr std::size_t ¢ = 0)
{ {

const char* p; return n == s.size() ? ¢ :

std::size_t sz: 'a' <= s[n] && s[n] <= 'z' ? countlower(s, n+ 1, c + 1)
public: : countlower(s, n + 1, c);

template<std::size_t N> }

constexpr conststr(const char(&a)[N]): p(a), sz(N - 1) {}

std::cout << "Number lowercase letters in \"Hello, world!\" is ";

n r char rator ;.S n n |
constexpr char operator[](std::size_t n) const { constN<countlower("Hello, world!")> out2;

return n < sz ? p[n] : throw std::out_of_range("");

}

constexpr std::size_t size() const { return sz; }

1¥,® CSCs 44 ETHzurich

if constexpr

e A nifty feature that allows you to get rid of some specializations

template<int N>

constexpr int fibonacci() {return fibonacci<N-1>() + fibonacci<N-2>(); }
template<>

constexpr int fibonacci<1>() { return 1; }

template<>

constexpr int fibonacci<®>() { return 6; }

template<int N>
constexpr int fibonacci()

{
if constexpr (N>=2)
return fibonacci<N-1>() + fibonacci<N-2>();
else
return N;
'

e Much simpler on the compiler, no recursive instantiations of templates

e Codeisdirectly evaluated at compile time

1¥,® CSCs 45 ETHzurich

Classes and Meta-Programming

e Kinds of members
o [Static] Function
o [Static] Data
o Constexpr function
o Static const/Constexpr data
o Type (nested type names)
e Meta-programming is manipulating types

o And static const/constexpr values
e The main mechanism is using class templates
e Single applications rarely need TMP

e Useful when building abstraction layers

o E.g., header-only libraries

e ODL and headers (One definition Rule)

\?\o}o CSCS 46 ETHziirich

Step Back

Type members are possible

Access like static members

o X::type_t<U>

Visibility rules as normal

Constexpr variables visible at translation unit level

inline constexpr is your friend for const vars etc

&9 @® CSCS

S 4

47

class X {
/*public/private/*/protected:

using type = ...;

template <typename T, ...>
using type_t = ...;

static const int a = 10;
static constexpr int b =10;

inline constexpr int ¢ = 10;

X(...);

void member(...);

ETH:zurich

A simple example

e A complex way to fill a register with a value

movl $120, %esi

Compiler explorer link

template <int N>
struct factorial {
static constexpr int value

N * factorial<N-1>::value;

'

template <>
struct factorial<l1> {
static constexpr int value=1;

'

int main() {
std::cout << factorial<5>::value << "\n";

}

e NB. use -ftemplate-depth=N to increase recursive template instantiation depth

<¥,® CSCs 48 ETHzurich

https://godbolt.org/z/n5s4fjEjv

A Convention for TMP

e TMP is still an “accident” in C++
o Boost::MPL conventions partially adopted by ISO C++
e A meta-function returning a type has a public ::type
e A meta-function returning a value has a public ::value
e Usually/Frequently/Often both

template <Arguments..>

struct meta_function {
using type = ... ;
static constexpr ... value
using result_type = ... ;
using param_type = ... ;

e Type members with arbitrary names are called traits

o Often small helper utilities like is_something<T>

¥% cscs 49

ETH:zurich

std::integral_constant

e A type for each number

template<class I, T v>
struct integral_constant {
using value_type = T ;
static constexpr value_type value = v;

’
// use :value to access the underlying content
static_assert(integral_constant<int, 7>::value == 7, “Error”)
@@ CSCS 50 ETH:zirich

S 4

Building abstractions: std::rank example

o Type of T[3]1[4] is (T[3])[4]

template<class 1> // Primary
struct rank : public integral_constant<size_t, 0> {};

template<class T, size_t N> // Specialize for an array type
struct rank<T[N]> // (int[3])[4] => T[4] where T = int[3]
: public integral_constant<size_t, rank<T>::value + 1> {};

template<class T>
struct rank<T[]>
: public integral_constant<size_t, rank<T>::value + 1> {};

int main() {
int x[5][4][7][2];
std::cout << rank<decltype(x)>::value << std::endl;

e Gives output of 4 Link to example

1¥,® CSCs 51 ETHzurich

https://godbolt.org/z/j6KMTcrM8

An Example with Types: If on Types

e |f (boolean value) then typel, else type2

template <bool Pred, typename T1, typename T2>
struct select_first {

using type = T2; // Primary (false)

s

template <typename T1, typename T2>
struct select_first<true, T1, T2> {

using type = T1; // Specialization for true

'

e But why do we need this?

e One building block for more complex meta-programming functions/features

1¥,® CSCs 52 ETHzurich

One (Maybe) Silly Example

template <bool WithRef>

X += 1;
return Xx;

}

int main() {
int x = 1;
std::cout << with_ref<false>(x) << "
std::cout << with_ref<true>(x) << "

typename select_first<WithRef, int&, int>::type
with_ref (typename select_first<WithRef, int&, int>::type x) {

' << X << std::endl;
' << X << std::endl;

e Gives 2 1 2 2 Link

e Note use of typename for the return type of the function

o the compiler needs this to warn it that the type isn't known yet

o you see this everywhere in TMP

N A g CSCS

53

ETH:zurich

https://godbolt.org/z/WEqj6PKq3

An example 1/6

e my_container is not a template

o my_container is not flexible

struct my_container {
using value_t = int;

container_t C;

my_container(size_t s) : C(s) {}

'

my_container my_c(42);

using container_t = vector<value_t>;

N A g CSCS

54

ETH:zurich

An example 2/6

e Customizing the basics

template <typename VT>
struct my_container {
using value_t = VT;

container_t C;

my_container(size_t s)

'

my_container my_c<int>(42);

using container_t = vector<value_t>;

: C(s) {}

N A g CSCS

55

ETH:zurich

An example 3/6

e Customizing the allocator

template <typename VT, typename Allocator = allocator<VT>>

struct my_container {
using value_t = VT;
using container_t = vector<value_t, Allocator>;

container_t C;

my_container(size_t s) : C(s) {}

'

my_container<int> my_c(42);
my_container<int, std::allocator<int>> my_c(42);
my_container<int, std::allocator<double>> my_c(42);

\3\0‘0 CSCS 56 ETH:zurich

An example 4/6 - Template Template Arguments

e Avoiding redundancies

template <typename VT,
template <typename> class Allocator = allocator>
struct my_container {
using value_t = VT;
using container_t = vector<value_t, Allocator<value_t>>;
container_t C;

my_container(size_t s) : C(s) {}

'

my_container<int> my_c(42);
my_container<int, std::allocator> my_c2(42);

1¥,® CSCs 57 ETHzurich

An example 5/6

e Being completely explicit

template <typename Container>

struct my_container {
using value_t = typename Container::value_type;
using container_t = Container;
container_t C;

my_container(size_t s) : C(s) {}

'

my_container<vector<int, allocator<int>>> my_c(42);

N A g CSCS

58

ETH:zurich

An example 6/6

e Customizing the whole

template <typename VT,
template <typename, typename> class CT = vector,
template <typename> class Allocator = allocator>
struct my_container {
using value_t = VT;
using container_t = CT<value_t, Allocator<value_t>>;
container_t C;

my_container(size_t s) : C(s) {}

'

my_container<int> my_c(42);
my_container<int, vector> my_c2(42);
my_container<int, vector, allocator> my_c3(42);

1¥,® CSCs 59 ETHzurich

Extra Example : demangle_helper

e Here's an example of some of the constructs in use
o Worked example if time permits

e |t uses a compiler extension to print types nicely

Link to Compiler Explorer

\?\o}o CSCS 40 ETHziirich

https://godbolt.org/z/1MMjGjz8z

Concluding remarks

e Whenever you write the same basic code structure multiple times
o Can you template it?

o Separation of algorithm/data

e Example: CPU version/ GPU version
o Basically the same, but with some tweaks

o Abstract most out, and specialize for the special bits

e Traits abstract out small elements of the logic
o Many small helper types that handle typing sub-tasks

o Zero/Low cost (at least at run-time) abstractions
e Meta-programming allows library developers to create highly tuned code
o Manipulating types instead of values
o Fusion of kernels, Unrolling/reordering of loops
o Specializations for types/data layouts

\?\o:-o CSCS 41 ETHziirich

