
Advanced C++ Course
Functional and generic programming utilities

CSCS

std::tuple is simple, why do we care?

Generic programming in C++ is in many cases "remove as many constraints as possible": the fewer
constraints, the more generic

Don't overdo it, if there isn't a use case for it

Sometimes we introduce constraints without realizing it, sometimes we introduce bugs without realizing it

Important to understand the semantics and subtleties of the basic utilities when applying them to real
problems

This session will cover a basic set of C++ tools that are useful in generic programming, including many
functional programming utilities

1

Warmup

What are the requirements on T ?

template <typename T>
void f(T&&) noexcept {
 // I am the most generic function, but I can't do anything
}

2

Warmup

What are the requirements on T ?

template <typename T>
void f(T&& t) noexcept {
 std::cout << t << '\n';
}

3

Warmup

What are the requirements on T ?

template <typename T>
void f(T&& t) noexcept {
 t.foo();
}

4

Warmup

What are the requirements on T ?

template <typename T>
void f(T&& t, bool flag) noexcept {
 if (flag) {
 t = T{};
 }
}

5

Warmup

What are the requirements on T and U ?

template <typename T, typename U>
void f(T&& t, U&& u) noexcept {
 t = u;
}

6

Warmup

What are the requirements on T and U ?

template <typename T, typename U>
void f(T&& t, U&& u) noexcept {
 t = std::forward<U>(u);
}

7

Warmup

Constraints come in different forms

Not only "has member function foo "

Also:

Default constructibility

Copyability

Movability

Comparability

...

8

Session overview

C++ standard library basics:

std::tuple for storing a compile-time known number of potentially homogeneous types

by far the most commonly used utility in generic programming

std::optional for storing up to one type

std::variant for storing one of a compile-time known number of potentially homogeneous types

Functional utilities

Lambdas and other function objects

Partial application, function invocation, etc.

Finally: all of the above together

9

std::tuple : what is it not good for?

If all elements in the tuple are known to be of the same type, prefer std::array

std::array<int, 3> a{42, 43, 44};

// not
std::tuple<int, int, int> t{42, 43, 44};

10

std::tuple : what is it not good for?

If you can give names to the members, prefer a struct

struct interval {
 double begin;
 double end;
};

interval i{1.0, 13.5};
// use i.begin and i.end

// not
using interval = std::tuple<double, double>
interval i{1.0, 13.5};
// use std::get<0>(i) and std::get<1>(i)

11

std::tuple : what is it good for? Generic programming!

std::tuple<Ts...>

std::tuple<T1, T2>

std::tuple<int, double>

12

std::tuple : what is it good for?

std::tuple<Ts...> : great for storing arguments for later use

Common pattern to separate:

Description of work

Execution of work

For example:

Store a task for later execution on a thread pool

Store a CUDA kernel for later execution with a given stream

template <typename... Ts>
struct mytype {
 // Unfortunately we can't do this
 // Ts... ts;
 // But we can do this
 std::tuple<Ts...> ts;
};

13

std::tuple : Kernel launcher

Full CUDA example: https://godbolt.org/z/cqnE6WzM8

__global__ void fill(int* array, int n, int x);

int main() {
 int* array; int n; int x;

 auto k = make_kernel_launcher(
 256, (n + 256 - 1) / 256,
 fill,
 array, n, x);

 {
 // Initialize stream etc.
 cudaStream_t stream{};
 k(stream);
 }
}

template <typename F, typename... Ts>
struct kernel_launcher {
 int block_dim;
 int grid_dim;

 std::decay_t<F> f;
 std::tuple<std::decay_t<Ts>...> t;

 void operator()(cudaStream_t stream) { /* TODO */ }
};

template <typename F, typename... Ts>
auto make_kernel_launcher(
 int block_dim, int grid_dim, F&& f, Ts&&... ts) {
 return kernel_launcher<F, Ts...>(
 block_dim, grid_dim,
 std::forward<F>(f),
 std::tuple<std::decay_t<Ts>...>(std::forward<Ts>(ts)...)
);
}

14

https://godbolt.org/z/cqnE6WzM8

std::tuple : constructing

Ts... auto t = decltype(t)

int, double&, mytype std::tuple(ts...) std::tuple<int, double, mytype>

int, double&, mytype std::make_tuple(ts...) std::tuple<int, double, mytype>

int, double&, mytype std::tuple<std::decay_t<Ts>...>(ts...) std::tuple<int, double, mytype>

int, double&, mytype std::tuple<Ts...>(ts...) std::tuple<int, &double, mytype>

int, double&, mytype std::forward_as_tuple(ts...) std::tuple<int&, double&, mytype&>

15

std::tuple : constructing but with forwarding

Ts... auto t = decltype(t)

int, double&,
mytype std::tuple(std::forward<Ts>(ts)...)

std::tuple<int, double,
mytype>

int, double&,
mytype std::make_tuple(std::forward<Ts>(ts)...)

std::tuple<int, double,
mytype>

int, double&,
mytype

std::tuple<std::decay_t<Ts>...>(std::forward<Ts>
(ts)...)

std::tuple<int, double,
mytype>

int, double&,
mytype std::tuple<Ts...>(std::forward<Ts>(ts)...)

std::tuple<int, &double,
mytype>

int, double&,
mytype std::forward_as_tuple(std::forward<Ts>(ts)...)

std::tuple<int&&, double&,
mytype&&>

16

std::optional

Traditional use case: failure

template <typename T>
T div(T x, T y) noexcept {
 return x / y; // May be undefined behaviour
}

template <typename T>
std::optional<T> safeish_div(T x, T y) noexcept {
 if (y == T{0}) { return std::nullopt; }
 else { return x / y; }
}

However, std::expected (C++23) or exceptions are generally still a better choice because they can tell you
why something failed

17

std::optional

Traditional use case: missing value

std::vector<int> v1;
int x1 = v1.back(); // Undefined behaviour

myvector<int> v2;
// Use of x2 requires explicit checking that it's valid
std::optional<int> x2 = v2.back();

18

std::optional

Generic programming use case: storing non-default-constructible types

For example: value filled in asynchronously by another thread

struct mytype {
 mytype() = delete;
 mytype(int x) : x(x) {}
 // copy and move constructors/assignment
};
template <typename T>
struct mycontainer {
 // Requires that T is default-constructible
 T x{};
};
// mycontainer<mytype> c{}; // not ok
mycontainer<mytype> c{mytype(42)}; // ok

struct mytype {
 mytype() = delete;
 mytype(int x) : x(x) {}
 // copy and move constructors/assignment
};
template <typename T>
struct mycontainer2 {
 // x can be filled in later without constraints on T
 std::optional<T> x;
};
mycontainer<mytype> c{}; // ok
mycontainer<mytype> c{mytype(42)}; // ok

19

std::variant

Closed set of homogeneous types, one is active

Like union, but type safe

Setting

std::variant<int, std::string> v{"hello"};
// The second alternative is now active
std::print("Alternative {} is active\n", v.index());
// Is the first alternative active?
std::print("Is the first alternative active: {}\n",
 std::holds_alternative<T>(v));

Getting

// Access with std::get
std::string x1 = std::get<1>(v); // ok
std::string x2 = std::get<std::string>(v); // ok
// throws std::bad_variant_access
// std::string y1 = std::get<0>(v);
// throws std::bad_variant_access
// std::string y2 = std::get<int>(v);

Visiting

// Or with a generic function
std::visit(visitor, v);

20

std::variant

Use case: abstract syntax tree

Full example: https://godbolt.org/z/dG1jb7x84

template <typename... Ts>
using up = std::unique_ptr<Ts...>;

struct lit; struct add; struct mul;
using ast = std::variant<lit, up<add>, up<mul>>;

struct lit { int x; };
struct add { ast x, y; };
struct mul { ast x, y; };

int eval(ast const&);
struct visitor {
 auto operator()(lit const& l) const { return l.x; }
 auto operator()(up<add> const& a) const { return eval(a->x) + eval(a->y); }
 auto operator()(up<mul> const& m) const { return eval(m->x) * eval(m->y); }
};
int eval(ast const& a) { return std::visit(visitor{}, a); }

21

https://godbolt.org/z/dG1jb7x84

std::variant

std::monostate : an empty tag type that can be used to make std::variant default constructible

// First type is active after default construction
// Fails to compile if mytype is not default constructible
std::variant<mytype, int> v;

// Always compiles, no matter what mytype is
std::variant<std::monostate, mytype, int> v;

22

std::variant

Use case: Implementing std::optional !

template <typename T>
struct optional {
 std::variant<std::monostate, T> v;
};

23

Questions about tuple , optional , or variant ?

24

Functional utilities

Not just functions: C++ has many other things that behave like a function

lambdas, operator() , std::function , std::bind_front

And many utilities that operate on functions or are useful in conjunction with those utilities:

std::invoke , std::apply , std::reference_wrapper

25

Lambda use case 1: algorithms as higher-order functions

Sometimes functions take another function as a parameter: "higher order function"

Treating functions as data

Example: transform takes a range as input and modifies the elements with a function

What can we use in place of ???

std::vector<int> x{1, 4, 7, 1, 4};
std::ranges::transform(x, ???);

26

Lambda use case 1: algorithms as higher-order functions

Sometimes functions take another function as a parameter: "higher order function"

Treating functions as data

Example: transform takes a range as input and modifies the elements with a function

We can pass regular functions into transform

int triple(int x) { return 3 * x; }

std::vector<int> x{1, 4, 7, 1, 4};
std::ranges::transform(x, triple);

27

Lambda use case 1: algorithms as higher-order functions

Sometimes functions take another function as a parameter: "higher order function"

Treating functions as data

Example: transform takes a range as input and modifies the elements with a function

We can also use lambdas: "function literals"

std::vector<int> x{1, 4, 7, 1, 4};
std::ranges::transform(x, [](int x) { return 3 * x; });

28

Lambda use case 1: algorithms as higher-order functions

Sometimes functions take another function as a parameter: "higher order function"

Treating functions as data

Example: transform takes a range as input and modifies the elements with a function

Lambdas can also be assigned to variables, but we don't know their type

std::vector<int> x{1, 4, 7, 1, 4};
auto triple = [](int x) { return 3 * x; };
std::ranges::transform(x, triple);

29

Lambda use case 2: adding state

Sometimes we want to use variables from outside the lambda/function

Example: partition partitions an input range into two parts based on a predicate

We can again use functions or lambdas in place of ???

std::vector<int> x{1, 4, 7, 1, 4};
// partition vector into even and odd
std::ranges::partition(x, ???);

30

Lambda use case 2: adding state

Sometimes we want to use variables from outside the lambda/function

Example: partition partitions an input range into two parts based on a predicate

We can again use functions or lambdas in place of ???

bool even(int x) { return x % 2 == 0; }

std::vector<int> x{1, 4, 7, 1, 4};
// partition vector into even and odd
std::ranges::partition(x, even);

31

Lambda use case 2: adding state

Sometimes we want to use variables from outside the lambda/function

Example: partition partitions an input range into two parts based on a predicate

We can again use functions or lambdas in place of ???

std::vector<int> x{1, 4, 7, 1, 4};
// partition vector into even and odd
auto even = [](int x) { return x % 2 == 0; };
std::ranges::partition(x, even);

32

Lambda use case 2: adding state

Sometimes we want to use variables from outside the lambda/function

Example: partition partitions an input range into two parts based on a predicate

How do we use pivot in pred ?

std::vector<int> x{1, 4, 7, 1, 4};
int pivot = get_pivot(v);
// partition vector into bigger and smaller than pivot
auto pred = [](int x) { return x > pivot; }; // Does not compile!
std::ranges::partition(x, pred);

33

Lambda use case 2: adding state

Sometimes we want to use variables from outside the lambda/function

Example: partition partitions an input range into two parts based on a predicate

[] allows "capturing" variables from outer scope

Lambdas also sometimes called "closures", because they "close over" the
environment where they are defined

std::vector<int> x{1, 4, 7, 1, 4};
int pivot = get_pivot(v);
// partition vector into bigger and smaller than pivot
auto pred = [pivot](int x) { return x > pivot; };
std::ranges::partition(x, pred);

34

Lambda use case 3: C++ overloads and function templates

Sometimes we want to pass not only one function to another function, but a
whole "overload set", i.e. multiple functions with the same name

Example: print in another thread with std::async

void print(double);
void print(struct important_data);
template <typename T>
void print(T);

std::vector<int> v{1, 2, 3, 4};
auto all_prints = &print; // Does not work!
auto one_print = &print<std::vector<int>>; // Ok, but only one function
auto f = std::async(all_prints, v);

35

Lambda use case 3: C++ overloads and function templates

Sometimes we want to pass not only one function to another function, but a
whole "overload set", i.e. multiple functions with the same name

Example: print in another thread with std::async

Can only take the address of one specific overload

Lambdas can help us delay the choice of overload

Advanced: sometimes abstracted away as a macro
(https://github.com/rollbear/lift/blob/3927d06415f930956341afd5bc223f912042d7e4/include/lift.hp
p#L20-L29)

void print(double);
void print(struct important_data);
template <typename T>
void print(T);

std::vector<int> v{1, 2, 3, 4};
auto all_prints = [](auto x) { print(x); };
auto f = std::async(all_prints, v);

36

https://github.com/rollbear/lift/blob/3927d06415f930956341afd5bc223f912042d7e4/include/lift.hpp#L20-L29
https://github.com/rollbear/lift/blob/3927d06415f930956341afd5bc223f912042d7e4/include/lift.hpp#L20-L29

Lambdas, formally

https://en.cppreference.com/w/cpp/language/lambda

37

https://en.cppreference.com/w/cpp/language/lambda

Lambdas, formally

Lambdas are syntax sugar over structs with operator() , i.e. the call operator

The following are equivalent, except we don't know the type of real_lambda

struct my_lambda {
 int x;

 auto operator()(int y) const { return x * y; }
}

int x = 42;
auto emulated_lambda = my_lambda{x};
auto real_lambda = [x](int y) { return x * y; };

38

Lambdas, formally

Captures can be implicit or explicit, by value or by reference

Capture x explicitly by reference

struct my_lambda {
 int& x;

 auto operator()(int y) const { return x * y; }
}

int x = 42;
auto emulated_lambda = my_lambda{x};
auto real_lambda = [&x](int y) { return x * y; };

39

Lambdas, formally

Captures can be implicit or explicit, by value or by reference

Capture x implicitly by reference, z explicitly by value

struct my_lambda {
 int& x;
 int z;

 auto operator()(int y) const { return x * y * z; }
}

int x = 42;
int z = 3;
auto emulated_lambda = my_lambda{x, z};
auto real_lambda = [&, z](int y) { return x * y * z; };

40

Lambdas, formally

Captures can be implicit or explicit, by value or by reference

Capture x explicitly by reference, z implicitly by value

struct my_lambda {
 int& x;
 int z;

 auto operator()(int y) const { return x * y * z; }
}

int x = 42;
int z = 3;
auto emulated_lambda = my_lambda{x, z};
auto real_lambda = [=, &x](int y) { return x * y * z; };

41

Lambdas, formally

Captures can be implicit or explicit, by value or by reference

Capture this by value or reference

class my_class {
 int x;

 auto f() {
 // *this copied into lambda capture
 auto t = std::thread([*this])(){ /* ... */ });
 t.detach();
 }

 auto g() {
 // this is a pointer, beware dangling pointer access!
 auto t = std::thread([this]() { /* ... */ });
 t.detach();
 }
};

42

Lambdas, formally

Captures can be given new names inside the lambda body with initializer syntax

Can capture by value and by reference also with initializers

void g(std::tuple<int, double> const& t);

void f(std::tuple<int, double>&& t1) {
 std::jthread([t2 = std::move(t1)]() {
 g(t2);
 });
}

43

Lambdas, formally

Which overload is called below?

void g(std::tuple<int, double>&& t);
void g(std::tuple<int, double> const& t);

void f(std::tuple<int, double>&& t1) {
 std::jthread([t2 = std::move(t1)]() {
 g(std::move(t2));
 });
}

44

Lambdas, formally

Which overload is called below?

Call operator is const by default

g(std::tuple<int, double> const&) is called!

https://godbolt.org/z/xs4cdYh8f

void g(std::tuple<int, double>&& t);
void g(std::tuple<int, double> const& t);

void f(std::tuple<int, double>&& t1) {
 std::jthread([t2 = std::move(t1)]() {
 g(std::move(t2));
 });
}

45

https://godbolt.org/z/xs4cdYh8f

Lambdas, formally

Call operator is const by default

But can be made mutable

struct my_lambda {
 type x;

 auto operator()() /* const */ { return g(std::move(x)); }
}

type x{};
auto emulated_lambda = my_lambda{std::move(x)};
auto real_lambda = [x = std::move(x)](int y) mutable { return g(std::move(x)); };

46

Lambdas, formally

Lambda parameters can be auto (or auto& or auto&&) since C++14

Generates a templated operator() for you

struct my_lambda {
 template <typename T1, typename T2>
 auto operator(T1 x1, T2 x2)() {}
}

auto emulated_lambda = my_lambda{};
auto real_lambda = [](auto x1, auto x2) {};

47

Lambdas, formally

Lambda parameters can be auto (or auto& or auto&&) since C++14

Generates a templated operator() for you

auto&& acts as a forwarding reference

struct my_lambda {
 template <typename T1, typename T2>
 auto operator(T1&& x1, T2 x2)() {}
}

auto emulated_lambda = my_lambda{};
auto real_lambda = [](auto&& x1, auto x2) {};

48

Lambdas, formally

Lambda parameters can be auto (or auto& or auto&&) since C++14

Generates a templated operator() for you

Since C++20 a lambda can be explicitly templated

struct my_lambda {
 template <typename T1, typename T2>
 auto operator(T1&& x1, T2 x2)() {}
}

auto emulated_lambda = my_lambda{};
auto real_lambda = []<typename T2>(auto&& x1, T2 x2) {};

49

Lambdas, formally

Capturing packs can be done with tuples or explicit packs since C++20

Since C++20:

template <typename... Ts>
void f(Ts&&... ts) {
 auto ff1 = [ts...]() {};
 auto ff2 = [...ts = std::forward<Ts>(ts)]() {};
}

In C++14:

template <typename... Ts>
void f(Ts&&... ts) {
 auto ff1 = [t = std::tuple<std::decay_t<Ts>...>(ts...)]() {};
 auto ff2 = [t = std::tuple<std::decay_t<Ts>...>(std::forward<Ts>(ts)...)]() {};
}

50

Lambdas, formally

auto is the default return type and often sufficient

Return type can be specified explicitly with the trailing -> syntax

Can be used for SFINAE simply not accidentally returning the wrong type

struct my_lambda {
 int operator(int x1, int x2)() { return x + y; }
}

auto emulated_lambda = my_lambda{};
auto real_lambda = [](int x, int y) -> int { return x + y; };

51

std::function use case: API boundary with std::function

Not everything needs to be templated etc. for optimal performance

A usable API may be more important

Example: register a function to be called at startup of a library

We can use function pointers

void register_startup_handler(void(*)(const configuration&));
void print_config(const configuration&);

register_startup_handler(print_config);

52

std::function use case: API boundary with std::function

Not everything needs to be templated etc. for optimal performance

A usable API may be more important

Example: register a function to be called at startup of a library

We can use function pointers, but lambdas are not function pointers (most of
the time: https://godbolt.org/z/Wb6xx6Kz1)

void register_startup_handler(void(*)(const configuration&));

auto print_config = [](const configuration&) { /* do stuff */ };
register_startup_handler(print_config);

53

https://godbolt.org/z/Wb6xx6Kz1

std::function use case: API boundary with std::function

Not everything needs to be templated etc. for optimal performance

A usable API may be more important

Example: register a function to be called at startup of a library

We can use function pointers, but lambdas are not function pointers (most of
the time: https://godbolt.org/z/Wb6xx6Kz1)

void register_startup_handler(void(*)(const configuration&));

int x = 42;
auto print_config = [x](const configuration&) { /* do stuff with x as well */ };
register_startup_handler(print_config); // Does not work!

54

https://godbolt.org/z/Wb6xx6Kz1

std::function use case: API boundary with std::function

Not everything needs to be templated etc. for optimal performance

A usable API may be more important

Example: register a function to be called at startup of a library

We can template, but not necessary in this case

template <typename F>
void register_startup_handler(F&&);

int x = 42;
auto print_config = [x](const configuration&) { /* do stuff with x as well */ };
register_startup_handler(print_config);

55

std::function use case: API boundary with std::function

Not everything needs to be templated etc. for optimal performance

A usable API may be more important

Example: register a function to be called at startup of a library

std::function : type-erased callable wrapper

Takes function anything that looks like it could be callable with the right signature

void register_startup_handler(std::function<void(const configuration&)>);

int x = 42;
auto print_config = [x](const configuration&) { /* do stuff with x as well */ };
register_startup_handler(print_config);

56

std::function , formally

Type-erased callable wrapper

Type-erasure implies heap-allocation and virtual functions and in turn some overhead

Will not be inlined

Can hide implementation in source file

57

Callables, summarized

Function pointers: use for C compatibility or if you want to guarantee stateless callables

Take by generic template parameter if you want the most generic interface

Can constrain with std::invocable if necessary

Take by std::function if you want a simple API where the implementation can be hidden in a source file

Function parameter Plain function Stateless lambda Stateful lambda std::function

Function pointer ok ok no maybe

Template ok ok ok ok

std::function ok ok ok ok

58

https://godbolt.org/z/7o9hPhncf

Other useful functional utilities

59

std::bind_front : "hard-code" the first arguments of a
function

std::bind_front exists since C++20

Does a "partial application" of the function

std::bind_front will not implicitly call the function when all arguments have been supplied (not even
possible in the general case)

std::bind also exists, but prefer lambdas or std::bind_front whenever possible; std::bind has hairy
corner cases that make it error-prone: https://godbolt.org/z/xPE6fa1K9

int f(double, std::string);
int x = 42; std::string y = "hello";

// bind_front reduces the arity of the function by the number of (non-function) arguments passed to bind_front
std::bind_front(f)(x, y);
std::bind_front(f, x)(y);
std::bind_front(f, x, y)();

60

https://godbolt.org/z/xPE6fa1K9

std::apply : unpack a tuple into separate arguments

Similar to unpacking with * in Python

Passes each element of tuple-like objects as separate arguments to the callable

int f(int, std::string);

std::tuple<int, std::string> t{42, "hello"};

// Equivalent to f(42, "hello")
std::apply(f, t);

61

std::apply : unpack a tuple into separate arguments

Useful together with std::bind_front

int f(double, int, std::string);

std::tuple<int, std::string> t{42, "hello"};

// Equivalent to f(3.14, 42, "hello")
std::apply(std::bind_front(f, 3.14), t));

62

std::apply exercise: finish kernel_launcher

See exercise tuple_storage_apply

template <typename F, typename... Ts>
struct kernel_launcher {
 int block_dim;
 int grid_dim;

 std::decay_t<F> f;
 std::tuple<std::decay_t<Ts>...> t;

 void operator()(cudaStream_t stream) { /* TODO */ }
};

63

std::apply exercise: implement it

See exercise apply

Example implementation: https://godbolt.org/z/6nzd1cjn6

// Equivalent to f(42, 3.14)
std::apply(f, std::tuple(42, 3.14));

64

https://godbolt.org/z/6nzd1cjn6

std::apply exercise: constructing tuples correctly

See exercise apply_tuple_bug

Is the following correct (equivalent to g(ts...)) for all Ts ?

template <typename... Ts>
auto f(Ts... ts) {
 return std::apply(g, std::tuple(ts...));
}

65

std::tuple : constructing, with a twist

Ts... auto t = decltype(t)

std::tuple<int, double&,
mytype> std::tuple(ts...) std::tuple<int, double&, mytype>

std::tuple<int, double&,
mytype> std::make_tuple(ts...)

std::tuple<std::tuple<int, double&,
mytype>>

std::tuple<int, double&,
mytype>

std::tuple<std::decay_t<Ts>...>
(ts...)

std::tuple<std::tuple<int, double&,
mytype>>

std::tuple<int, double&,
mytype> std::tuple<Ts...>(ts...)

std::tuple<std::tuple<int, &double,
mytype>>

std::tuple<int, double&,
mytype> std::forward_as_tuple(ts...)

std::tuple<std::tuple<int, double&,
mytype>&&>

66

std::(c)ref : obtain a copyable (const) reference to an
object

Value semantics like pointers, i.e. can be rebound

Non-nullable like references

std::(c)ref are functions which return std::reference_wrapper<T>

Useful to opt-in to references in places that normally don't allow references

int f(int&, std::string);

int x = 42;
std::string y = "hello";

std::bind_front(f, std::ref(x))(y);

67

Lambda hack: Immediately invoked function/lambda
expression

Can (ab)use lambdas for complex initialization

Ternary operator has no equivalent with if-else

auto x = pred() ? y : z;

68

Lambda hack: Immediately invoked function/lambda
expression

Can (ab)use lambdas for complex initialization

Can't return only from a scope, only from the whole function

auto x = if (pred()) {
 ??? y; // nothing we can do here
} else {
 ??? z; // nothing we can do here
}

69

Lambda hack: Immediately invoked function/lambda
expression

Can (ab)use lambdas for complex initialization

Can default initialize and then assign

// We have to know the type of x
T x;
if (pred()) {
 x = y;
} else {
 x = z;
}

70

Lambda hack: Immediately invoked function/lambda
expression

Can (ab)use lambdas for complex initialization

We can return from a lambda without returning from the outer function!

// We can also make x const
const auto x = [&]() {
 if (pred()) {
 return y; // return from lambda, not from outer scope!
 } else {
 return z; // return from lambda, not from outer scope!
 }
}();

71

overloaded exercise: How does the following work?

See exercise ast

template<class... Ts>
struct overloaded : Ts... { using Ts::operator()...; };

template<class... Ts>
overloaded(Ts...) -> overloaded<Ts...>;

int main() {
 std::variant<int, std::string> v{"hi!"};
 std::visit(overloaded([](int x) { std::cout << "variant holds " << x << '\n'; },
 [](std::string x) { std::cout << "variant holds " << x << '\n'; }),
 v)
}

72

Bonus: What does this do?

https://quuxplusone.github.io/blog/2018/05/17/super-elider-round-2/

https://akrzemi1.wordpress.com/2018/05/16/rvalues-redefined/

https://godbolt.org/z/qh7sEePT5

template <typename F>
class foo
{
 F&& f;

public:
 explicit foo(F&& f) : f(std::forward<F>(f)) {}

 using type = std::invoke_result_t<F&&>;
 operator type() { return std::forward<F>(f)(); }
};

73

https://quuxplusone.github.io/blog/2018/05/17/super-elider-round-2/
https://akrzemi1.wordpress.com/2018/05/16/rvalues-redefined/
https://godbolt.org/z/qh7sEePT5

