<&@, CSCS e
\' ' Centro Svizzero di Calcolo Scientifico E'" Z U r I Ch
A\

Swiss National Supercomputing Centre

Advanced C++ Course

Functional and generic programming utilities
CSCS

std: :tuple is simple, why do we care?

e Generic programming in C++ is in many cases "remove as many constraints as possible": the fewer
constraints, the more generic

o Don't overdo it, if there isn't a use case for it
e Sometimes we introduce constraints without realizing it, sometimes we introduce bugs without realizing it

o Important to understand the semantics and subtleties of the basic utilities when applying them to real
problems

e This session will cover a basic set of C++ tools that are useful in generic programming, including many
functional programming utilities

\:o:o CSCS 1 ETHziirich

Warmup

e What are the requirementson T7?

template <typename T>
void f(T&&) noexcept {
// I am the most generic function, but I can't do anything

}

¥% cscs 5

S 4

ETH:zurich

e What are the requirementson T7?

Warmup

template <typename T>

void f(T&& t) noexcept {

std::cout << t <x<

}

'"\n"';

&% cscs

S 4

ETH:zurich

Warmup

e What are the requirementson T7?

template <typename T>
void f(T&& t) noexcept {
t.foo();

}

\3\0:0 CSCS 4 ETHziirich

Warmup

e What are the requirementson T7?

template <typename T>
void f(T&& t, bool flag) noexcept ({
if (flag) {
t = T{};
'

\g; CSCS 5 ETHziirich

e What are the requirementson T and u?

Warmup

template <typename T, typename U=
void f(T&& t, U&& u) noexcept {
t = u;

}

&% cscs

S 4

ETH:zurich

e What are the requirementson T and u?

Warmup

template <typename T, typename U=
void f(T&& t, U&& u) noexcept {
t = std::forward<U>(u);

}

&% cscs

S 4

ETH:zurich

Warmup

e Constraints come in different forms
e Not only "has member function foo "
e Also:

o Default constructibility

o Copyability

o Movability

o Comparability

O LN J

\:o:o CSCS g ETHziirich

Session overview

e C++ standard library basics:

o std::tuple for storing a compile-time known number of potentially homogeneous types

= by far the most commonly used utility in generic programming

o std::optional for storing up to one type

o std::variant for storing one of a compile-time known number of potentially homogeneous types
e Functional utilities

o Lambdas and other function objects

o Partial application, function invocation, etc.

e Finally: all of the above together

\:o:o CSCS o ETHziirich

std: :tuple : what is it not good for?

e |f all elements in the tuple are known to be of the same type, prefer std::array

std::array<int, 3> a{42, 43, 44};

// not
std: :tuple<int, int, int> t{42, 43, 44},

\3\0:0 CSCS 10 ETHziirich

std: :tuple : what is it not good for?

e |f you can give names to the members, prefer a struct

struct interval {
double begin;
double end;

'

interval i{1.06, 13.5};
// use 1i.begin and i.end

// not
using interval = std::tuple<double, double>

interval i{1.0, 13.5};
// use std::get<0>(i) and std::get<1>(1i)

\:\0‘0 CSCS 11

ETH:zurich

std: :tuple : what is it good for? Generic programming!

® std::tuple<Ts...>
o std::tuple<T1, T2> i:

® std::tuple<int, double>

\3\0:0 CSCS 19 ETHziirich

std: :tuple : what is it good for?

e std::tuple<Ts...>:great for storing arguments for later use
e Common pattern to separate:

o Description of work

o Execution of work
e For example:

o Store a task for later execution on a thread pool

o Store a CUDA kernel for later execution with a given stream

template <typename... Ts>
struct mytype {
// Unfortunately we can't do this
// Ts... ts;
// But we can do this
std: :tuple<Ts...> ts;

'

\:0:0 CSCS 13 ETHziirich

std: :tuple : Kernel launcher

e Full CUDA example: https://godbolt.org/z/cqnE6WzM8

__global__ void fill(int* array, int n,

int main() A
int* array; int n; int Xx;

auto k = make_kernel_launcher(
256, (n + 256 - 1) / 256,

int x);

template <typename F, typename... Ts>
struct kernel_launcher {

int block_dim;

int grid_dim;

std::decay_t<F> T;
std: :tuple<std::decay_t<Ts>...> t;

void operator()(cudaStream_t stream) { /* TODO */ }

fill, 1%
array, n, X);
template <typename F, typename... Ts>
auto make_kernel_launcher(
{ - . int block_dim, int grid_dim, F&& f, Ts&&... ts) {
// Initialize stream etc. return kernel_launcher<F, Ts...>(
cudaStream_t stream{}; block_dim, grid_dim,
k(stream); std: :forward<F>(f),
std: :tuple<std::decay_t<Ts>...>(std::forward<Ts>(ts)...)
))
} }
- e .
&# @ CSCS 14 ETH:zurich

@

https://godbolt.org/z/cqnE6WzM8

std: :tuple : constructing

decltype(t)
int, double&, mytype | std::tuple(ts...) std::tuple<int, double, mytype>
int, double&, mytype | std::make_tuple(ts...) std::tuple<int, double, mytype>
int, double&, mytype | std::tuple<std::decay_t<Ts>...>(ts... std: :tuple<int, double, mytype>
int, double&, mytype | std::tuple<Ts...>(ts...) std::tuple<int, &double, mytype>
int, double&, mytype | std::forward_as_tuple(ts...) std::tuple<int&, double&, mytype&>
% cscs 15 ETHziirich

S 4

std: :tuple : constructing but with forwarding

int, double&,

decltype(t)

std: :tuple<int, double,

mytype std::tuple(std::forward<Ts>(ts)...) nytypes

int, double&, 4: mak 1 d: d4<T std: :tuple<int, double,

mytype std: :make_tuple(std::forward<Ts>(ts)...) mytype>

int, doubleg&, std::tuple<std::decay_t<Ts>...>(std::forward<Ts> std: :tuple<int, double,

mytype (ts)...) mytype>

int, double&, std: :tuple<int, &double,

mytype std::tuple<Ts...>(std::forward<Ts>(ts)...) mytype>

int, double&, std: :tuple<int&&, doubleg&,
std::forward_as_tuple(std::forward<Ts>(ts)...)

mytype

mytype&&>

&% cscs

S 4

16

ETH:zurich

std: :optional

e Traditional use case: failure

template <typename T>
T div(T x, T y) noexcept {
return x / y; // May be undefined behaviour

}

template <typename T>

std::optional<T> safeish_div(T x, T y) noexcept {
if (y == T{@}) { return std::nullopt; }
else { return x / y; }

e However, std::expected (C++23) or exceptions are generally still a better choice because they can tell you
why something failed

1¥,® CSCs 17 ETHzurich

std: :optional

e Traditional use case: missing value

std: :vector<int> v1;
int x1 = v1.back(); // Undefined behaviour

myvector<int> v2;
// Use of x2 requires explicit checking that it's valid
std::optional<int> x2 = v2.back();

ETH:zurich

std: :optional

e Generic programming use case: storing non-default-constructible types

e For example: value filled in asynchronously by another thread

struct mytype {
mytype() = delete;
mytype(int x) : x(x) {}
// copy and move constructors/assignment
b
template <typename T>
struct mycontainer {
// Requires that T is default-constructible

T x{};

by
// mycontainer<mytype> c{}; // not ok
mycontainer<mytype> c{mytype(42)}; // ok

struct mytype {
mytype() = delete;
mytype(int x) : x(x) {}
// copy and move constructors/assignment
}i
template <typename T>
struct mycontainer2?2 {
// x can be filled in later without constraints on T
std: :optional<T> x;

}
mycontainer<mytype> c{}; // ok
mycontainer<mytype> c{mytype(42)}; // ok

N A g CSCS

19

ETH:zurich

std: :variant

e Closed set of homogeneous types, one is active

e Like union, but type safe

Setting

Getting

std::variant<int, std::string> v{"hello"};

// The second alternative is now active

std::print("Alternative {} is active\n", v.index());

// Is the first alternative active?

std::print("Is the first alternative active: {}\n",
std::holds_alternative<T>(v));

N A g CSCS

20

// Access with std::get

std::string x1 = std::get<1>(v); // ok
std::string x2 = std::get<std::string>(v); // ok
// throws std::bad_variant_access

// std::string yl1 = std::get<0>(v);

// throws std::bad_variant_access

// std::string y2 = std::get<int>(v);

Visiting

// 0r with a generic function
std::visit(visitor, v);

ETH:zurich

std: :variant

e Use case: abstract syntax tree
e Full example: https://godbolt.org/z/dG1jb /x84

template <typename... Ts>
using up = std::unique_ptr<Ts...>;

struct 1lit; struct add; struct mul;
using ast = std::variant<lit, up<add>, up<mul>>;

struct 1lit { int x; };
struct add { ast x, y; };
struct mul { ast x, y; };

int eval(ast const&);

struct visitor {
auto operator()(lit const& 1) const { return 1l.x; }
auto operator()(up<add> const& a) const { return eval(a->x) + eval(a->y); }
auto operator() (up<mul> const& m) const { return eval(m->x) * eval(m->y); }

s

int eval(ast const& a) { return std::visit(visitor{}, a); }

1¥,® CSCs 21 ETHzurich

https://godbolt.org/z/dG1jb7x84

std: :variant

e std::monostate : an empty tag type that can be used to make std::variant default constructible

// First type is active after default construction
// Fails to compile if mytype is not default constructible
std::variant<mytype, int> v;

// Always compiles, no matter what mytype is
std::variant<std::monostate, mytype, int> v;

\3\0‘0 CSCS 29 ETH:zurich

std: :variant

e Use case: Implementing std::optional !

® | template <typename T>
struct optional A
std: :variant<std::monostate, T> v;

s

¥% cscs 23 ETHzirich

Questions about tuple, optional,or variant ?

\3\0:0 cscs o4 ETHziirich

Functional utilities

e Not just functions: C++ has many other things that behave like a function
o lambdas, operator(), std::function, std::bind_front
e And many utilities that operate on functions or are useful in conjunction with those utilities:

© std::invoke, std::apply, std::reference_wrapper

\:o} CSCS ot ETHziirich

Lambda use case 1: algorithms as higher-order functions

e Sometimes functions take another function as a parameter: "higher order function"
e Treating functions as data
e Example: transform takes a range as input and modifies the elements with a function

e What can we use in place of ???

std::vector<int> x{1, 4, 7, 1, 4};
std::ranges::transform(x, ???);

\:o} CSCS 24 ETHziirich

Lambda use case 1: algorithms as higher-order functions

e Sometimes functions take another function as a parameter: "higher order function"
e Treating functions as data
e Example: transform takes a range as input and modifies the elements with a function

e We can pass regular functions into transform

int triple(int x) { return 3 * x; }

std::vector<int> x{1, 4, 7, 1, 4};
std::ranges::transform(x, triple);

\3\010 CSCS 7 ETHziirich

Lambda use case 1: algorithms as higher-order functions

e Sometimes functions take another function as a parameter: "higher order function"
e Treating functions as data
e Example: transform takes a range as input and modifies the elements with a function

e \WWe can also use lambdas: "function literals"

std::vector<int> x{1, 4, 7, 1, 4};
std::ranges::transform(x, [](int x) { return 3 * x; });

\:o} CSCS)8 ETHziirich

Lambda use case 1: algorithms as higher-order functions

e Sometimes functions take another function as a parameter: "higher order function”
e Treating functions as data
e Example: transform takes a range as input and modifies the elements with a function

e Lambdas can also be assigned to variables, but we don't know their type

std::vector<int> x{1, 4, 7, 1, 4};
auto triple = [](int x) { return 3 * x; };
std::ranges::transform(x, triple);

\:o} CSCS 26 ETHziirich

Lambda use case 2: adding state

e Sometimes we want to use variables from outside the lambda/function
e Example: partition partitions an input range into two parts based on a predicate

e We can again use functions or lambdas in place of 27?2

std::vector<int> x{1, 4, 7, 1, 4)};
// partition vector into even and odd
std::ranges::partition(x, ???);

\3\010 CSCS 30 ETHziirich

Lambda use case 2: adding state

e Sometimes we want to use variables from outside the lambda/function
e Example: partition partitions an input range into two parts based on a predicate

e We can again use functions or lambdas in place of ???

bool even(int x) { return x % 2 == 0; }

std::vector<int> x{1, 4, 7, 1, 4};
// partition vector into even and odd
std::ranges::partition(x, even);

\3\010 CSCS 31 ETHziirich

Lambda use case 2: adding state

e Sometimes we want to use variables from outside the lambda/function
e Example: partition partitions an input range into two parts based on a predicate

e We can again use functions or lambdas in place of 27?2

std::vector<int> x{1, 4, 7, 1, 4};

// partition vector into even and odd

auto even = [](int x) { return x % 2 == 0; };
std::ranges::partition(x, even);

\:o} CSCS 39 ETHziirich

Lambda use case 2: adding state

e Sometimes we want to use variables from outside the lambda/function
e Example: partition partitions an input range into two parts based on a predicate

e How do we use pivot in pred?

std::vector<int> x{1, 4, 7, 1, 4};

int pivot = get_pivot(v);

// partition vector into bigger and smaller than pivot

auto pred = [](int x) { return x > pivot; }; // Does not compile!
std::ranges::partition(x, pred);

\:\0‘0 CSCS 33

ETH:zurich

Lambda use case 2: adding state

e Sometimes we want to use variables from outside the lambda/function
e Example: partition partitions an input range into two parts based on a predicate
e [] allows "capturing" variables from outer scope

o Lambdas also sometimes called "closures", because they "close over" the
environment where they are defined

std: :vector<int> x{1, 4, 7, 1, 4};

int pivot = get_pivot(v);

// partition vector into bigger and smaller than pivot
auto pred = [pivot](int x) { return x > pivot; };
std::ranges::partition(x, pred);

¥% cscs 34

ETH:zurich

Lambda use case 3: C++ overloads and function templates

e Sometimes we want to pass not only one function to another function, but a
whole "overload set", i.e. multiple functions with the same name

e Example: print in another thread with std::async

void print(double);

void print(struct important_data);
template <typename T>

void print(T);

std::vector<int> v{1, 2, 3, 4};

auto all_prints = &print; // Does not work!

auto one_print = &print<std::vector<int>>; // 0Ok, but only one function
auto f = std::async(all_prints, v);

\:o} CSCS 35 ETHziirich

Lambda use case 3: C++ overloads and function templates

e Sometimes we want to pass not only one function to another function, but a
whole "overload set", i.e. multiple functions with the same name

e Example: print in another thread with std::async
e Can only take the address of one specific overload
e Lambdas can help us delay the choice of overload

o Advanced: sometimes abstracted away as a macro

(https://github.com/rollbear/lift/blob/3927d06415f930956341afd5bc223f912042d7e4/include/lift.hp
p#L20-L29)

void print(double);

void print(struct important_data);
template <typename T>

void print(T);

std::vector<int> v{1, 2, 3, 4};
auto all_prints = [](auto x) { print(x); };
auto f = std::async(all_prints, v);

\go CSCS 24 ETHziirich

https://github.com/rollbear/lift/blob/3927d06415f930956341afd5bc223f912042d7e4/include/lift.hpp#L20-L29
https://github.com/rollbear/lift/blob/3927d06415f930956341afd5bc223f912042d7e4/include/lift.hpp#L20-L29

¢

CSCS

’4
¢,

/

Lambdas, formally

https://en.cppreference.com/w/cpp/language/lambda

Syntax

[captures] (params) specs requiresioptional) { body } (1)

[captures] attr { params) specs requires(optional) { body } (1) (since C++23)
[captures] { body} (2)

[captures] attr specs { body } (2) (since C++23)
[captures] < tparams > requires(optional) { params)} specs requires(optional) { body } (3) (since C++20)
[captures] < tparams > requires(optional) attr (params) specs requiresioptional) { body } (3) (since C++23)
[captures] < tparams > requires(optional) { body } (4) (since C++20)
[captures] < tparams > requires(optional) attr specs { body } (4) (since C++23)

1) Full form.

2) Omitted parameter list: function takes no arguments, as if the parameter list were ().
3) Same as (1), but specifies a generic lambda and explicitly provides a list of template parameters.
4) Same as (2), but specifies a generic lambda and explicitly provides a list of template parameters.

37 ETH:zurich

https://en.cppreference.com/w/cpp/language/lambda

Lambdas, formally

e Lambdas are syntax sugar over structs with operator() , i.e. the call operator

e The following are equivalent, except we don't know the type of real_lambda

struct my_lambda {
int Xx;

auto operator()(int y) const { return x * y; }

}

int x = 42;
auto emulated_lambda = my_lambda{x};
auto real_lambda = [x](int y) { return x * y; };

¥% cscs 38

ETH:zurich

Lambdas, formally

e Captures can be implicit or explicit, by value or by reference

e Capture x explicitly by reference

struct my_lambda {
int& x;

auto operator()(int y) const { return x * y; }

}

int X = 42;
auto emulated_lambda = my_lambda{x};
auto real_lambda = [&x](int y) { return x * y; };

¥% cscs 39

ETH:zurich

Lambdas, formally

e Captures can be implicit or explicit, by value or by reference

e Capture x implicitly by reference, z explicitly by value

struct my_lambda ({
int& x;
int z;

auto operator()(int y) const { return x * y * z; }

}
int X = 42;
int z = 3;

auto emulated_lambda = my_lambda{x, z};
auto real_lambda = [&, z](int y) { return x *y * z; };

¥% cscs 40

ETH:zurich

Lambdas, formally

e Captures can be implicit or explicit, by value or by reference

e Capture x explicitly by reference, z implicitly by value

struct my_lambda ({
int& x;
int z;

auto operator()(int y) const { return x * y * z; }

}
int X = 42;
int z = 3;

auto emulated_lambda = my_lambda{x, z};
auto real_lambda = [=, &x](int y) { return x * y * z; };

¥% cscs 41

ETH:zurich

Lambdas, formally

e Captures can be implicit or explicit, by value or by reference

e Capture this by value or reference

class my_class {
int Xx;

auto f() {
// *this copied into lambda capture
auto t = std::thread([*this])(){ /* ... */ });
t.detach();

}

auto g() {
// this is a pointer, beware dangling pointer access!

auto t = std::thread([this]() { /* ... */ });
t.detach();
}
b

¥% cscs 42

ETH:zurich

Lambdas, formally

e Captures can be given new names inside the lambda body with initializer syntax

e Can capture by value and by reference also with initializers

void g(std::tuple<int, double> const& t);

void f(std::tuple<int, double>&& t1) {
std::jthread([t2 = std::move(t1)]() {
g(t2);
}) s

\:o} CSCS 43 ETHziirich

Lambdas, formally

e Which overload is called below?

void g(std::tuple<int, double>&& t);
void g(std::tuple<int, double> const& t);

void f(std::tuple<int, double>&& t1) {
std::jthread([t2 = std::move(t1)]() A
g(std::move(t2));
});

\3\0:0 CSCS 44 ETHziirich

Lambdas, formally

e Which overload is called below?
e Call operator is const by default

o g(std::tuple<int, double> const&) is called!
o https://godbolt.org/z/xs4cdYh8f

void g(std::tuple<int, double>&& t);
void g(std::tuple<int, double> const& t);

void f(std::tuple<int, double>&& t1) {
std::jthread([t2 = std::move(t1)]() A
g(std::move(t2));

}) s

\:o} CSCS 45 ETHziirich

https://godbolt.org/z/xs4cdYh8f

Lambdas, formally

e Call operator is const by default

e But can be made mutable

struct my_lambda {
type x;

auto operator()() /* const */ { return g(std::move(x)); }

}

type x{};
auto emulated_lambda = my_lambda{std::move(x)};

auto real_lambda = [x = std::move(x)](int y) mutable { return g(std::move(x)); };

¥% cscs 44

ETH:zurich

Lambdas, formally

e Lambda parameters can be auto (or auto& or auto&&) since C++14

e Generates a templated operator() for you

struct my_lambda {
template <typename T1, typename T2>
auto operator(T1 x1, T2 x2)() {}

}

auto emulated_lambda = my_lambda{};
auto real_lambda = [](auto x1, auto x2) {};

\g; CSCS 47 ETHziirich

Lambdas, formally

e Lambda parameters can be auto (or auto& or auto&&) since C++14

e Generates a templated operator() for you

e auto&& acts as a forwarding reference

struct my_lambda ({
template <typename T1, typename T2>
auto operator(T1&& x1, T2 x2)() {}

}

auto emulated_lambda = my_lambda{};

auto real_lambda = [](auto&& x1, auto x2) {};

P
\\0‘0 CSCS

48

ETH:zurich

Lambdas, formally

e Lambda parameters can be auto (or auto& or auto&&) since C++14

e Generates a templated operator() for you

e Since C++20 a lambda can be explicitly templated

struct my_lambda ({
template <typename T1, typename T2>
auto operator(T1&& x1, T2 x2)() {}

}

auto emulated_lambda = my_lambda{};
auto real_lambda = []<typename T2>(auto&& x1, T2 x2) {};

¥% cscs 49

ETH:zurich

Lambdas, formally

e Capturing packs can be done with tuples or explicit packs since C++20

Since C++20: InC++14:

template <typename... Ts>

template <typename... Ts> void f(Ts&&... ts) {
void f(TS&&. .. tS) { auto ff1 = [t = std::tuple<std::decay_t<Ts>...>(ts...)]() {};

auto ff1 = ['tS]() {} . auto ff2 = [t = std::tuple<std::decay_t<Ts>...>(std::forward<Ts>(ts)...)]() {};

50 ¢))

auto ff2 = [...ts = std::forward<Ts>(ts)]() {};

}
#@® CSCS 50 ETH:zurich

@

Lambdas, formally

e auto isthe default return type and often sufficient
e Return type can be specified explicitly with the trailing -> syntax

e Can be used for SFINAE simply not accidentally returning the wrong type

struct my_lambda ({
int operator(int x1, int x2)() { return x + y; }

}
auto emulated_lambda = my_lambda{};
auto real_lambda = [](int x, int y) -> int { return x + vy; };
<& .
&# @ CSCS 51 ETH:zurich

@

std: :function use case: APl boundary with std::function

e Not everything needs to be templated etc. for optimal performance
e A usable APl may be more important
e Example: register a function to be called at startup of a library

e \WWe can use function pointers

void register_startup_handler(void(*)(const configuration&));
void print_config(const configurationg&);

register_startup_handler(print_config);

\3\0:0 CSCS - ETHziirich

std: :function use case: APl boundary with std::function

e Not everything needs to be templated etc. for optimal performance
e A usable APl may be more important
e Example: register a function to be called at startup of a library

e \We can use function pointers, but lambdas are not function pointers (most of
the time: https://godbolt.org/z/Wbbéxx6Kz1)

void register_startup_handler(void(*)(const configuration&));

auto print_config = [](const configuration&) { /#* do stuff #*/ };
register_startup_handler(print_config);

\:0:0 CSCS £q ETHziirich

https://godbolt.org/z/Wb6xx6Kz1

std: :function use case: APl boundary with std::function

e Not everything needs to be templated etc. for optimal performance
e A usable APl may be more important
e Example: register a function to be called at startup of a library

e We can use function pointers, but lambdas are not function pointers (most of
the time: https://godbolt.org/z/Wbbéxx6Kz1)

void register_startup_handler(void(*)(const configuration&));

int X = 42;

auto print_config = [x](const configuration&) { /#* do stuff with x as well */ };
register_startup_handler(print_config); // Does not work!

\:0:0 CSCS 54 ETHziirich

https://godbolt.org/z/Wb6xx6Kz1

std: :function use case: APl boundary with std::function

e Not everything needs to be templated etc. for optimal performance
e A usable APl may be more important
e Example: register a function to be called at startup of a library

e We can template, but not necessary in this case

template <typename F>
void register_startup_handler(F&&);

int X = 42;
auto print_config = [x](const configuration&) { /#* do stuff with x as well */ };
register_startup_handler(print_config);

\3\0:0 CSCS 5 ETHziirich

std: :function use case: APl boundary with std::function

e Not everything needs to be templated etc. for optimal performance

e A usable APl may be more important

e Example: register a function to be called at startup of a library

e std::function : type-erased callable wrapper

o Takes function anything that looks like it could be callable with the right signature

void register_startup_handler(std::function<void(const configuration&)>);

int x = 42;

auto print_config = [x](const configuration&) { /# do stuff with x as well */ };
register_startup_handler(print_config);

\3\0:0 CSCS c4 ETHziirich

std: :function , formally

e Type-erased callable wrapper
e Type-erasure implies heap-allocation and virtual functions and in turn some overhead

e Will not be inlined

e Can hide implementation in source file

\:o} CSCS £ ETHziirich

Callables, summarized

e Function pointers: use for C compatibility or if you want to guarantee stateless callables

e Take by generic template parameter if you want the most generic interface

o Can constrain with std::invocable if necessary

e Take by std::function if you want a simple APl where the implementation can be hidden in a source file

Function parameter

Plain function

Stateless lambda

Stateful lambda

Function pointer ok ok no maybe
Template ok ok ok ok
std: :function ok ok ok ok

30
\\0‘0 CSCS

58

ETH:zurich

https://godbolt.org/z/7o9hPhncf

Other useful functional utilities

<& .
1¥,® CSCs 59 ETH:zurich

std: :bind_front : "hard-code" the first arguments of a
function

e std::bind_front exists since C++20
e Does a "partial application" of the function

e std::bind_front will not implicitly call the function when all arguments have been supplied (not even
possible in the general case)

e std::bind also exists, but prefer lambdas or std::bind_front whenever possible; std::bind has hairy
corner cases that make it error-prone: https://godbolt.org/z/xPE6falK9

int f(double, std::string);
int x = 42; std::string y = "hello";

// bind_front reduces the arity of the function by the number of (non-function) arguments passed to bind_front
std::bind_front(f)(x, y);

std::bind_front(f, x)(y);

std::bind_front(f, x, y)();

\3\0:0 CSCS 40 ETHziirich

https://godbolt.org/z/xPE6fa1K9

std: :apply : unpack a tuple into separate arguments

e Similar to unpacking with * in Python

e Passes each element of tuple-like objects as separate arguments to the callable

int f(int, std::string);
std: :tuple<int, std::string> t{42, "hello"};

// Equivalent to f(42, "hello")
std::apply(f, t);

\3\0:0 CSCS 41 ETHziirich

std: :apply : unpack a tuple into separate arguments

o Useful together with std::bind_front

int f(double, int, std::string);
std: :tuple<int, std::string> t{42, "hello"};

// Equivalent to f(3.14, 42, "hello")
std::apply(std::bind_front(f, 3.14), t));

\g; CSCS 42 ETHziirich

std: :apply exercise: finish kernel_launcher

e See exercise tuple_storage_apply

template <typename F, typename... Ts>
struct kernel_launcher {

int block_dim;

int grid_dim;

std::decay_t<F> f;
std::tuple<std::decay_t<Ts>...> t;

void operator()(cudaStream_t stream) { /* TODO */ }

¥% cscs 63 ETHzirich

std: :apply exercise: implement it

e See exercise apply

e Example implementation: https://godbolt.org/z/6nzd1cjné

// Equivalent to f(42, 3.14)
std::apply(f, std::tuple(42, 3.14));

\3\0:0 CSCS ” ETHziirich

https://godbolt.org/z/6nzd1cjn6

std: :apply exercise: constructing tuples correctly

e See exercise apply_tuple_bug

e |s the following correct (equivalentto g(ts...)) forall Ts?

template <typename... Ts>
auto f(Ts... ts) {
return std::apply(g, std::tuple(ts...));

}

\3\0:0 CSCS 45 ETHziirich

std: :tuple : constructing, with a twist

std: :tuple<int, doubleg&, 4 1 4 le<i doubl

mytypes std::tuple(ts...) std::tuple<int, double&, mytype>

std: :tuple<int, doubleg&, 4- mak 1 std: :tuple<std::tuple<int, doubleg,

nytypes std: :make_tuple(ts...) mytypes>

std: :tuple<int, doubleg&, std: :tuple<std::decay_t<Ts>...> std: :tuple<std::tuple<int, double¥,

mytype> (ts...) mytype>>

std: :tuple<int, doubleg, N std: :tuple<std::tuple<int, &double,

mytype> std::tuple<Ts...>(ts...) mytypes>

std: :tuple<int, doubleg&, std: :tuple<std::tuple<int, doubleg,
std::forward_as_tuple(ts...)

mytype>

mytype>&&>

&% cscs

S 4

66

ETH:zurich

std::(c)ref : obtain a copyable (const) reference to an
object

e Value semantics like pointers, i.e. can be rebound
e Non-nullable like references
e std::(c)ref are functions which return std::reference_wrapper<T>

e Useful to opt-in to references in places that normally don't allow references

int f(int&, std::string);

int X = 42;
std::string y = "hello";

std::bind_front(f, std::ref(x))(y);

\3\0:0 CSCS 47 ETHziirich

Lambda hack: Immediately invoked function/lambda
expression

e Can (ab)use lambdas for complex initialization

e Ternary operator has no equivalent with if-else

auto x = pred() ? vy : z;

\:o} CSCS 48 ETHziirich

Lambda hack: Immediately invoked function/lambda
expression

e Can (ab)use lambdas for complex initialization

e Can't return only from a scope, only from the whole function

auto x = if (pred()) {

??? y; // nothing we can do here
} else {

??? z; // nothing we can do here

}

\:o} CSCS 49 ETHziirich

Lambda hack: Immediately invoked function/lambda
expression

e Can (ab)use lambdas for complex initialization

e Candefaultinitialize and then assign

// We have to know the type of x
T Xx;

if (pred()) {

X =Y;
} else {
X = Z;

}

\3\010 CSCS 70 ETHziirich

Lambda hack: Immediately invoked function/lambda
expression

e Can (ab)use lambdas for complex initialization

e We can return from a lambda without returning from the outer function!

// We can also make x const
const auto x = [&]() {
if (pred()) {
return y; // return from lambda, not from outer scope!
} else {
return z; // return from lambda, not from outer scope!

}
r()s

\go CSCS 71 ETHziirich

overloaded exercise: How does the following work?

e See exercise ast

template<class... Ts>
struct overloaded : Ts... { using Ts::operator()...; };
template<class... Ts>

overloaded(Ts...) -> overloaded<Ts...>;

int main() A
std::variant<int, std::string> v{"hi!"};
std::visit(overloaded([](int x) { std::cout << "variant holds " << x << '\n'; },
[](std::string x) { std::cout << "variant holds " << x << '\n'; }),

v)

\?} CSCS 79 ETHziirich

Bonus: What does this do?

e https://quuxplusone.github.io/blog/2018/05/17/super-elider-round-2/
o https://akrzemil.wordpress.com/2018/05/16/rvalues-redefined/
o https://godbolt.org/z/gh7sEePT5

template <typename F>
class foo

{
F&& T;

public:
explicit foo(F&& f) : f(std::forward<F>(f)) {}

using type = std::invoke_result_t<F&&>;
operator type() { return std::forward<F>(f)(); }

\go CSCS 73 ETHziirich

https://quuxplusone.github.io/blog/2018/05/17/super-elider-round-2/
https://akrzemi1.wordpress.com/2018/05/16/rvalues-redefined/
https://godbolt.org/z/qh7sEePT5

