
Concepts

An introduction

Alberto Invernizzi, CSCS (alberto.invernizzi@cscs.ch)

mailto:alberto.invernizzi@cscs.ch

Why do we need generic programming?

1

Strong Typing

C++ is a strongly typed language.

This means that each variable is assigned a type at definition, and
it cannot change over time.

This gives a lot of safety, plus it allows the language(=compiler)
to do assumptions and optimize the code.

2

 Strong typing vs duck typing?
class Person:
 def feed(self, food):
 print(f"lets eat some {food}")

class Fireplace:
 def feed(self, fuel):
 print(f"let's burn some {fuel}")

def feed_all(storage, obj):
 for element in storage:
 obj.feed(element)

storage_basement = [" ", " "️]
storage_1st_floor = [" ", " ", " ",]

print("not a big problem... ")
feed_all(storage_1st_floor, Fireplace())

print("unless you start eating it! ")
feed_all(storage_basement, Person())

not a big problem...
let's burn some
let's burn some
let's burn some
unless you start eating it!
lets eat some
lets eat some ️

3

It's better safe than sorry

4

It's better typesafe than sorry

(cit)

5

Yeah, but having to write a function/class for every single type
(and combination) does not scale...

int subtract(unsigned int a, unsigned int b);
int subtract(int a, int b);
int subtract(int a, unsigned int b);
float subtract(float a, float b);

Oh! That's why we need generic programming!

6

C++ GENERIC PROGRAMMING = TEMPLATE!

template <class T>
T add(T a, T B) {
 return a + b;
}

auto add(auto a, auto B) {
 return a + b;
}

We can have template specialization for different types and combinations, but the template "placeholder"
accepts anything.

If at template instantiation time, it addresses a problem with the given type (e.g. we call a functon that this
type does not have), it would complain with a build error .

Basic template generic programming sounds a bit like "duck typing", but at compile time.

It's slightly better, but in C++ we are not satisfied with sub-optimal solutions...we want the best!

7

SFINAE

SFINAE allows to disable/enable some overloads at certain
conditions.

template <class T,
 std::enable_if_t<
 std::is_integral_v<T>
 || std::is_integral_v<T>,
 int> = 0>
void add(T a, T b) {
 return a + b;
}

With SFINAE we have a finer control on the overload set, in
practice it enables constraining template!

Exactly what we wanted!

8

SFINAE is powerful and is
supported by STL

Actually, SFINAE allows us to do many things in a quite rigorous
way.

SFINAE is supported by the STL with:

std::enable_if

it can be used in many ways to enable or disable a
specialization (class, function, ...)

#include <type_traits>

it provides some common and useful requirements and
transformers for types

9

SFINAE errors

It's nice that we can figure out at compile time about errors
instead of facing them at runtime...we like it!

It means less error in production, safer code. Nice!

#include <vector>
#include <algorithm>

struct Number {
 long long value_;
};

int main() {
 std::vector<int> integers;
 std::sort(integers.begin(), integers.end());

 std::vector<Number> numbers;
 std::sort(numbers.begin(), numbers.end());
}

There's an error in the code above...

10

GCC 13.2 - 79 lines of output
I n f i l e i n c l u d e d f r o m / o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ a l g o b a s e . h : 7 1 ,
 f r o m / o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / v e c t o r : 6 2 ,
 f r o m : 1 :
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / p r e d e f i n e d _ o p s . h : I n i n s t a n t i a t i o n o f ' c o n s t e x p r b o o l _ _ g n u _ c x x : : _ _ o p s : : _ I t e r _ l e s s _ i t e r : : o p e r a t o r () (_ I t e r a t o r 1 , _ I t e r a t o r 2) c o n s t [w i t h _ I t e r a t o r 1 = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , s t d : : v e c t o r > ; _ I t e r a t o r 2 = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , s t d : : v e c t o r >] ' :
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ a l g o . h : 1 8 1 9 : 1 4 : r e q u i r e d f r o m ' v o i d s t d : : _ _ i n s e r t i o n _ s o r t (_ R a n d o m A c c e s s I t e r a t o r , _ R a n d o m A c c e s s I t e r a t o r , _ C o m p a r e) [w i t h _ R a n d o m A c c e s s I t e r a t o r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , v e c t o r > ; _ C o m p a r e = _ _ g n u _ c x x : : _ _ o p s : : _ I t e r _ l e s s _ i t e r] '
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ a l g o . h : 1 8 5 9 : 2 5 : r e q u i r e d f r o m ' v o i d s t d : : _ _ f i n a l _ i n s e r t i o n _ s o r t (_ R a n d o m A c c e s s I t e r a t o r , _ R a n d o m A c c e s s I t e r a t o r , _ C o m p a r e) [w i t h _ R a n d o m A c c e s s I t e r a t o r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , v e c t o r > ; _ C o m p a r e = _ _ g n u _ c x x : : _ _ o p s : : _ I t e r _ l e s s _ i t e r] '
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ a l g o . h : 1 9 5 0 : 3 1 : r e q u i r e d f r o m ' v o i d s t d : : _ _ s o r t (_ R a n d o m A c c e s s I t e r a t o r , _ R a n d o m A c c e s s I t e r a t o r , _ C o m p a r e) [w i t h _ R a n d o m A c c e s s I t e r a t o r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , v e c t o r > ; _ C o m p a r e = _ _ g n u _ c x x : : _ _ o p s : : _ I t e r _ l e s s _ i t e r] '
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ a l g o . h : 4 8 6 1 : 1 8 : r e q u i r e d f r o m ' v o i d s t d : : s o r t (_ R A I t e r , _ R A I t e r) [w i t h _ R A I t e r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , v e c t o r >] '
: 1 3 : 1 4 : r e q u i r e d f r o m h e r e
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / p r e d e f i n e d _ o p s . h : 4 5 : 2 3 : e r r o r : n o m a t c h f o r ' o p e r a t o r < ' (o p e r a n d t y p e s a r e ' N u m b e r ' a n d ' N u m b e r ')
 4 5 | { r e t u r n * _ _ i t 1 < * _ _ i t 2 ; }
 | ~ ~ ~ ~ ~ ~ ~ ^ ~ ~ ~ ~ ~ ~ ~
I n f i l e i n c l u d e d f r o m / o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ a l g o b a s e . h : 6 7 :
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ i t e r a t o r . h : 1 2 5 0 : 5 : n o t e : c a n d i d a t e : ' t e m p l a t e b o o l _ _ g n u _ c x x : : o p e r a t o r < (c o n s t _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r L , _ C o n t a i n e r > & , c o n s t _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r R , _ C o n t a i n e r > &) '
 1 2 5 0 | o p e r a t o r < (c o n s t _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r L , _ C o n t a i n e r > & _ _ l h s ,
 | ^ ~ ~ ~ ~ ~ ~ ~
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ i t e r a t o r . h : 1 2 5 0 : 5 : n o t e : t e m p l a t e a r g u m e n t d e d u c t i o n / s u b s t i t u t i o n f a i l e d :
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / p r e d e f i n e d _ o p s . h : 4 5 : 2 3 : n o t e : ' N u m b e r ' i s n o t d e r i v e d f r o m ' c o n s t _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r L , _ C o n t a i n e r > '
 4 5 | { r e t u r n * _ _ i t 1 < * _ _ i t 2 ; }
 | ~ ~ ~ ~ ~ ~ ~ ^ ~ ~ ~ ~ ~ ~ ~
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ i t e r a t o r . h : 1 2 5 8 : 5 : n o t e : c a n d i d a t e : ' t e m p l a t e b o o l _ _ g n u _ c x x : : o p e r a t o r < (c o n s t _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r , _ C o n t a i n e r > & , c o n s t _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r , _ C o n t a i n e r > &) '
 1 2 5 8 | o p e r a t o r < (c o n s t _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r , _ C o n t a i n e r > & _ _ l h s ,
 | ^ ~ ~ ~ ~ ~ ~ ~
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ i t e r a t o r . h : 1 2 5 8 : 5 : n o t e : t e m p l a t e a r g u m e n t d e d u c t i o n / s u b s t i t u t i o n f a i l e d :
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / p r e d e f i n e d _ o p s . h : 4 5 : 2 3 : n o t e : ' N u m b e r ' i s n o t d e r i v e d f r o m ' c o n s t _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r , _ C o n t a i n e r > '
 4 5 | { r e t u r n * _ _ i t 1 < * _ _ i t 2 ; }
 | ~ ~ ~ ~ ~ ~ ~ ^ ~ ~ ~ ~ ~ ~ ~
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / p r e d e f i n e d _ o p s . h : I n i n s t a n t i a t i o n o f ' b o o l _ _ g n u _ c x x : : _ _ o p s : : _ V a l _ l e s s _ i t e r : : o p e r a t o r () (_ V a l u e & , _ I t e r a t o r) c o n s t [w i t h _ V a l u e = N u m b e r ; _ I t e r a t o r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , s t d : : v e c t o r >] ' :
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ a l g o . h : 1 7 9 9 : 2 0 : r e q u i r e d f r o m ' v o i d s t d : : _ _ u n g u a r d e d _ l i n e a r _ i n s e r t (_ R a n d o m A c c e s s I t e r a t o r , _ C o m p a r e) [w i t h _ R a n d o m A c c e s s I t e r a t o r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , v e c t o r > ; _ C o m p a r e = _ _ g n u _ c x x : : _ _ o p s : : _ V a l _ l e s s _ i t e r] '
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ a l g o . h : 1 8 2 7 : 3 6 : r e q u i r e d f r o m ' v o i d s t d : : _ _ i n s e r t i o n _ s o r t (_ R a n d o m A c c e s s I t e r a t o r , _ R a n d o m A c c e s s I t e r a t o r , _ C o m p a r e) [w i t h _ R a n d o m A c c e s s I t e r a t o r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , v e c t o r > ; _ C o m p a r e = _ _ g n u _ c x x : : _ _ o p s : : _ I t e r _ l e s s _ i t e r] '
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ a l g o . h : 1 8 5 9 : 2 5 : r e q u i r e d f r o m ' v o i d s t d : : _ _ f i n a l _ i n s e r t i o n _ s o r t (_ R a n d o m A c c e s s I t e r a t o r , _ R a n d o m A c c e s s I t e r a t o r , _ C o m p a r e) [w i t h _ R a n d o m A c c e s s I t e r a t o r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , v e c t o r > ; _ C o m p a r e = _ _ g n u _ c x x : : _ _ o p s : : _ I t e r _ l e s s _ i t e r] '
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ a l g o . h : 1 9 5 0 : 3 1 : r e q u i r e d f r o m ' v o i d s t d : : _ _ s o r t (_ R a n d o m A c c e s s I t e r a t o r , _ R a n d o m A c c e s s I t e r a t o r , _ C o m p a r e) [w i t h _ R a n d o m A c c e s s I t e r a t o r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , v e c t o r > ; _ C o m p a r e = _ _ g n u _ c x x : : _ _ o p s : : _ I t e r _ l e s s _ i t e r] '
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ a l g o . h : 4 8 6 1 : 1 8 : r e q u i r e d f r o m ' v o i d s t d : : s o r t (_ R A I t e r , _ R A I t e r) [w i t h _ R A I t e r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , v e c t o r >] '
: 1 3 : 1 4 : r e q u i r e d f r o m h e r e
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / p r e d e f i n e d _ o p s . h : 9 8 : 2 2 : e r r o r : n o m a t c h f o r ' o p e r a t o r < ' (o p e r a n d t y p e s a r e ' N u m b e r ' a n d ' N u m b e r ')
 9 8 | { r e t u r n _ _ v a l < * _ _ i t ; }
 | ~ ~ ~ ~ ~ ~ ^ ~ ~ ~ ~ ~ ~
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ i t e r a t o r . h : 1 2 5 0 : 5 : n o t e : c a n d i d a t e : ' t e m p l a t e b o o l _ _ g n u _ c x x : : o p e r a t o r < (c o n s t _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r L , _ C o n t a i n e r > & , c o n s t _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r R , _ C o n t a i n e r > &) '
 1 2 5 0 | o p e r a t o r < (c o n s t _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r L , _ C o n t a i n e r > & _ _ l h s ,
 | ^ ~ ~ ~ ~ ~ ~ ~
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ i t e r a t o r . h : 1 2 5 0 : 5 : n o t e : t e m p l a t e a r g u m e n t d e d u c t i o n / s u b s t i t u t i o n f a i l e d :
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / p r e d e f i n e d _ o p s . h : 9 8 : 2 2 : n o t e : ' N u m b e r ' i s n o t d e r i v e d f r o m ' c o n s t _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r L , _ C o n t a i n e r > '
 9 8 | { r e t u r n _ _ v a l < * _ _ i t ; }
 | ~ ~ ~ ~ ~ ~ ^ ~ ~ ~ ~ ~ ~
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ i t e r a t o r . h : 1 2 5 8 : 5 : n o t e : c a n d i d a t e : ' t e m p l a t e b o o l _ _ g n u _ c x x : : o p e r a t o r < (c o n s t _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r , _ C o n t a i n e r > & , c o n s t _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r , _ C o n t a i n e r > &) '
 1 2 5 8 | o p e r a t o r < (c o n s t _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r , _ C o n t a i n e r > & _ _ l h s ,
 | ^ ~ ~ ~ ~ ~ ~ ~
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ i t e r a t o r . h : 1 2 5 8 : 5 : n o t e : t e m p l a t e a r g u m e n t d e d u c t i o n / s u b s t i t u t i o n f a i l e d :
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / p r e d e f i n e d _ o p s . h : 9 8 : 2 2 : n o t e : ' N u m b e r ' i s n o t d e r i v e d f r o m ' c o n s t _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r , _ C o n t a i n e r > '
 9 8 | { r e t u r n _ _ v a l < * _ _ i t ; }
 | ~ ~ ~ ~ ~ ~ ^ ~ ~ ~ ~ ~ ~
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / p r e d e f i n e d _ o p s . h : I n i n s t a n t i a t i o n o f ' b o o l _ _ g n u _ c x x : : _ _ o p s : : _ I t e r _ l e s s _ v a l : : o p e r a t o r () (_ I t e r a t o r , _ V a l u e &) c o n s t [w i t h _ I t e r a t o r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , s t d : : v e c t o r > ; _ V a l u e = N u m b e r] ' :
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ h e a p . h : 1 4 0 : 4 8 : r e q u i r e d f r o m ' v o i d s t d : : _ _ p u s h _ h e a p (_ R a n d o m A c c e s s I t e r a t o r , _ D i s t a n c e , _ D i s t a n c e , _ T p , _ C o m p a r e &) [w i t h _ R a n d o m A c c e s s I t e r a t o r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , v e c t o r > ; _ D i s t a n c e = l o n g i n t ; _ T p = N u m b e r ; _ C o m p a r e = _ _ g n u _ c x x : : _ _ o p s : : _ I t e r _ l e s s _ v a l] '
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ h e a p . h : 2 4 7 : 2 3 : r e q u i r e d f r o m ' v o i d s t d : : _ _ a d j u s t _ h e a p (_ R a n d o m A c c e s s I t e r a t o r , _ D i s t a n c e , _ D i s t a n c e , _ T p , _ C o m p a r e) [w i t h _ R a n d o m A c c e s s I t e r a t o r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , v e c t o r > ; _ D i s t a n c e = l o n g i n t ; _ T p = N u m b e r ; _ C o m p a r e = _ _ g n u _ c x x : : _ _ o p s : : _ I t e r _ l e s s _ i t e r] '
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ h e a p . h : 3 5 6 : 2 2 : r e q u i r e d f r o m ' v o i d s t d : : _ _ m a k e _ h e a p (_ R a n d o m A c c e s s I t e r a t o r , _ R a n d o m A c c e s s I t e r a t o r , _ C o m p a r e &) [w i t h _ R a n d o m A c c e s s I t e r a t o r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , v e c t o r > ; _ C o m p a r e = _ _ g n u _ c x x : : _ _ o p s : : _ I t e r _ l e s s _ i t e r] '
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ a l g o . h : 1 6 3 5 : 2 3 : r e q u i r e d f r o m ' v o i d s t d : : _ _ h e a p _ s e l e c t (_ R a n d o m A c c e s s I t e r a t o r , _ R a n d o m A c c e s s I t e r a t o r , _ R a n d o m A c c e s s I t e r a t o r , _ C o m p a r e) [w i t h _ R a n d o m A c c e s s I t e r a t o r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , v e c t o r > ; _ C o m p a r e = _ _ g n u _ c x x : : _ _ o p s : : _ I t e r _ l e s s _ i t e r] '
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ a l g o . h : 1 9 1 0 : 2 5 : r e q u i r e d f r o m ' v o i d s t d : : _ _ p a r t i a l _ s o r t (_ R a n d o m A c c e s s I t e r a t o r , _ R a n d o m A c c e s s I t e r a t o r , _ R a n d o m A c c e s s I t e r a t o r , _ C o m p a r e) [w i t h _ R a n d o m A c c e s s I t e r a t o r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , v e c t o r > ; _ C o m p a r e = _ _ g n u _ c x x : : _ _ o p s : : _ I t e r _ l e s s _ i t e r] '
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ a l g o . h : 1 9 2 6 : 2 7 : r e q u i r e d f r o m ' v o i d s t d : : _ _ i n t r o s o r t _ l o o p (_ R a n d o m A c c e s s I t e r a t o r , _ R a n d o m A c c e s s I t e r a t o r , _ S i z e , _ C o m p a r e) [w i t h _ R a n d o m A c c e s s I t e r a t o r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , v e c t o r > ; _ S i z e = l o n g i n t ; _ C o m p a r e = _ _ g n u _ c x x : : _ _ o p s : : _ I t e r _ l e s s _ i t e r] '
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ a l g o . h : 1 9 4 7 : 2 5 : r e q u i r e d f r o m ' v o i d s t d : : _ _ s o r t (_ R a n d o m A c c e s s I t e r a t o r , _ R a n d o m A c c e s s I t e r a t o r , _ C o m p a r e) [w i t h _ R a n d o m A c c e s s I t e r a t o r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , v e c t o r > ; _ C o m p a r e = _ _ g n u _ c x x : : _ _ o p s : : _ I t e r _ l e s s _ i t e r] '
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ a l g o . h : 4 8 6 1 : 1 8 : r e q u i r e d f r o m ' v o i d s t d : : s o r t (_ R A I t e r , _ R A I t e r) [w i t h _ R A I t e r = _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < N u m b e r * , v e c t o r >] '
: 1 3 : 1 4 : r e q u i r e d f r o m h e r e
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / p r e d e f i n e d _ o p s . h : 6 9 : 2 2 : e r r o r : n o m a t c h f o r ' o p e r a t o r < ' (o p e r a n d t y p e s a r e ' N u m b e r ' a n d ' N u m b e r ')
 6 9 | { r e t u r n * _ _ i t < _ _ v a l ; }
 | ~ ~ ~ ~ ~ ~ ^ ~ ~ ~ ~ ~ ~
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ i t e r a t o r . h : 1 2 5 0 : 5 : n o t e : c a n d i d a t e : ' t e m p l a t e b o o l _ _ g n u _ c x x : : o p e r a t o r < (c o n s t _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r L , _ C o n t a i n e r > & , c o n s t _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r R , _ C o n t a i n e r > &) '
 1 2 5 0 | o p e r a t o r < (c o n s t _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r L , _ C o n t a i n e r > & _ _ l h s ,
 | ^ ~ ~ ~ ~ ~ ~ ~
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ i t e r a t o r . h : 1 2 5 0 : 5 : n o t e : t e m p l a t e a r g u m e n t d e d u c t i o n / s u b s t i t u t i o n f a i l e d :
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / p r e d e f i n e d _ o p s . h : 6 9 : 2 2 : n o t e : ' N u m b e r ' i s n o t d e r i v e d f r o m ' c o n s t _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r L , _ C o n t a i n e r > '
 6 9 | { r e t u r n * _ _ i t < _ _ v a l ; }
 | ~ ~ ~ ~ ~ ~ ^ ~ ~ ~ ~ ~ ~
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ i t e r a t o r . h : 1 2 5 8 : 5 : n o t e : c a n d i d a t e : ' t e m p l a t e b o o l _ _ g n u _ c x x : : o p e r a t o r < (c o n s t _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r , _ C o n t a i n e r > & , c o n s t _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r , _ C o n t a i n e r > &) '
 1 2 5 8 | o p e r a t o r < (c o n s t _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r , _ C o n t a i n e r > & _ _ l h s ,
 | ^ ~ ~ ~ ~ ~ ~ ~
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / s t l _ i t e r a t o r . h : 1 2 5 8 : 5 : n o t e : t e m p l a t e a r g u m e n t d e d u c t i o n / s u b s t i t u t i o n f a i l e d :
/ o p t / c o m p i l e r - e x p l o r e r / g c c - 1 3 . 2 . 0 / i n c l u d e / c + + / 1 3 . 2 . 0 / b i t s / p r e d e f i n e d _ o p s . h : 6 9 : 2 2 : n o t e : ' N u m b e r ' i s n o t d e r i v e d f r o m ' c o n s t _ _ g n u _ c x x : : _ _ n o r m a l _ i t e r a t o r < _ I t e r a t o r , _ C o n t a i n e r > '
 6 9 | { r e t u r n * _ _ i t < _ _ v a l ; }
 | ~ ~ ~ ~ ~ ~ ^ ~ ~ ~ ~ ~ ~
C o m p i l e r r e t u r n e d : 1

11

Clang 17.0.1 - (extent of) 9 errors, 200+ lines of output
/opt/compiler-explorer/gcc-13.2.0/lib/gcc/x86_64-linux-gnu/13.2.0/../../../../include/c++/13.2.0/bits/predefined_ops.h:69:22: error: invalid operands to binary
expression ('Number' and 'Number')
 69 | { return *__it < __val; }
 | ~~~~~ ^ ~~~~~
/opt/compiler-explorer/gcc-13.2.0/lib/gcc/x86_64-linux-gnu/13.2.0/../../../../include/c++/13.2.0/bits/stl_heap.h:140:42: note: in instantiation of function
template specialization '__gnu_cxx::__ops::_Iter_less_val::operator()<__gnu_cxx::__normal_iterator<Number *, std::vector>, Number>' requested here
 140 | while (__holeIndex > __topIndex && __comp(__first + __parent, __value))
 | ^
/opt/compiler-explorer/gcc-13.2.0/lib/gcc/x86_64-linux-gnu/13.2.0/../../../../include/c++/13.2.0/bits/stl_heap.h:247:12: note: in instantiation of function
template specialization 'std::__push_heap<__gnu_cxx::__normal_iterator<Number *, std::vector>, long, Number, __gnu_cxx::__ops::_Iter_less_val>' requested here
 247 | std::__push_heap(__first, __holeIndex, __topIndex,
 | ^
/opt/compiler-explorer/gcc-13.2.0/lib/gcc/x86_64-linux-gnu/13.2.0/../../../../include/c++/13.2.0/bits/stl_heap.h:356:9: note: in instantiation of function template
specialization 'std::__adjust_heap<__gnu_cxx::__normal_iterator<Number *, std::vector>, long, Number, __gnu_cxx::__ops::_Iter_less_iter>' requested here
 356 | std::__adjust_heap(__first, __parent, __len, _GLIBCXX_MOVE(__value),
 | ^
/opt/compiler-explorer/gcc-13.2.0/lib/gcc/x86_64-linux-gnu/13.2.0/../../../../include/c++/13.2.0/bits/stl_algo.h:1635:12: note: in instantiation of function
template specialization 'std::__make_heap<__gnu_cxx::__normal_iterator<Number *, std::vector>, __gnu_cxx::__ops::_Iter_less_iter>' requested here
 1635 | std::__make_heap(__first, __middle, __comp);
 | ^
/opt/compiler-explorer/gcc-13.2.0/lib/gcc/x86_64-linux-gnu/13.2.0/../../../../include/c++/13.2.0/bits/stl_algo.h:1910:12: note: in instantiation of function
template specialization 'std::__heap_select<__gnu_cxx::__normal_iterator<Number *, std::vector>, __gnu_cxx::__ops::_Iter_less_iter>' requested here
 1910 | std::__heap_select(__first, __middle, __last, __comp);
 | ^
/opt/compiler-explorer/gcc-13.2.0/lib/gcc/x86_64-linux-gnu/13.2.0/../../../../include/c++/13.2.0/bits/stl_algo.h:1926:13: note: in instantiation of function
template specialization 'std::__partial_sort<__gnu_cxx::__normal_iterator<Number *, std::vector>, __gnu_cxx::__ops::_Iter_less_iter>' requested here
 1926 | std::__partial_sort(__first, __last, __last, __comp);
 | ^
/opt/compiler-explorer/gcc-13.2.0/lib/gcc/x86_64-linux-gnu/13.2.0/../../../../include/c++/13.2.0/bits/stl_algo.h:1947:9: note: in instantiation of function
template specialization 'std::__introsort_loop<__gnu_cxx::__normal_iterator<Number *, std::vector>, long, __gnu_cxx::__ops::_Iter_less_iter>' requested here
 1947 | std::__introsort_loop(__first, __last,
 | ^
/opt/compiler-explorer/gcc-13.2.0/lib/gcc/x86_64-linux-gnu/13.2.0/../../../../include/c++/13.2.0/bits/stl_algo.h:4861:12: note: in instantiation of function
template specialization 'std::__sort<__gnu_cxx::__normal_iterator<Number *, std::vector>, __gnu_cxx::__ops::_Iter_less_iter>' requested here
 4861 | std::__sort(__first, __last, __gnu_cxx::__ops::__iter_less_iter());
 | ^

12

 Every rose has its torn

I haven't said that SFINAE was fantastic...

Don't get me wrong: it is a super tool, but it looks more like a
workaround than a proper tool of the language.

The typical "it's not a bug is a feature" applied to the C++
language. Morover, SFINAE has some limitations (e.g. there is no
place for it in constructors).

Different techinques and language evolutions overcome some of
this limitations improving this situation:
tag dispatching, constexpr , and ...

CONCEPTS

C++20

13

Concepts

nothing dramatically new

it can be seen as a more readable way for SFINAE constraints

more readable code, and clearer error messages

that does not look like an incident

They introduce some new language keywords and construct:

requires

concept

14

From templates to concepts in three moves!

Ready?

15

Template
#include <type_traits>
#include <vector>

template <class Float>
Float mean(const Float a, const Float b) {
 return (a + b) / 2;
}

float res_00 = mean(2.0, 3.0); // 2.5
double res_01 = mean(2.0, 3.0); // 2.5

float res_02 = mean(1, 2); // 1
int res_03 = mean('a', 'd'); // 98 (= 'b')

// compile error: std::vector does not have `+`
std::vector<float> res_v = mean(
 std::vector<float>{1,2,3},
 std::vector<float>{4,5,6});

 no code duplication thanks to templates!

 one fits all...unconstrained!
 error message is not straightforward

16

SFINAE

#include <type_traits>

template <class Float,
 class = std::enable_if_t<std::is_floating_point_v<Float>>>
Float mean(const Float a, const Float b) {
 return (a + b) / 2;
}

float res_00 = mean(2.0, 3.0);
double res_01 = mean(2.0, 3.0);

// compile error
// float res_02 = mean(1, 2);
// int res_03 = mean('a', 'd');

error: no type named 'type' in 'struct std::enable_if<false, void>'
 2514 | using enable_if_t = typename enable_if<_Cond, _Tp>::type;

 Float is now constrained!

 code readability is affected
 error message is "a bit" cryptic

17

Concepts

#include <concepts>
template <std::floating_point Float>
Float mean(const Float a, const Float b) {
 return (a + b) / 2;
}

float res_00 = mean(2.0, 3.0);
double res_01 = mean(2.0, 3.0);

// compile error
// float res_02 = mean(1, 2);

error: no matching function for call to 'mean(int, int)'
 15 | float res_02 = mean(1, 2);
 | ~~~~^~~~~~
...
required for the satisfaction of 'floating_point<Float>' [with Float = int]
note: the expression 'is_floating_point_v<_Tp> [with _Tp = int]' evaluated to 'false'
 111 | concept floating_point = is_floating_point_v<_Tp>;
 | ^~~~~~~~~~~~~~~~~~~~~~~~

 same semantic
 better error message
 better code readability

18

SFINAE CONCEPTS
SFINAE

template <class Float,
 class = std::enable_if_t<std::is_floating_point_v<Float>>>
Float mean(const Float a, const Float b) {
 return (a + b) / 2;
}

Concepts

template <std::floating_point Float>
Float mean(const Float a, const Float b) {
 return (a + b) / 2;
}

We didn't introduce any new language keyword (yet), and we already achieved a more terse and readable
code, in addition to better error messages, expressing exactly the same thing!

A couple of notes:

SFINAE Concepts

STL definitions #include <type_traits> #include <concepts>

Names verb-like (e.g. is_floating_point) adjective-like (e.g. floating_point)

19

Exploring Concepts

20

Syntactic variants

template <std::floating_point Float>
Float mean(const Float a, const Float b) {
 return (a + b) / 2;
}

In this way we defined a named placeholder Float , on which we
constrain Float to be a std::floating_point .

This syntax can be used directly "in-place" using auto for
creating the placeholder

std::floating_point auto mean(
 const std::floating_point auto a,
 const std::floating_point auto b) {
 return (a + b) / 2;
}

Are they semantically the same?
 hint: how many placeholders there are?

21

template <std::floating_point Float>
Float mean(const Float a, const Float b) {
 return (a + b) / 2;
}

float res_00 = mean(2.0, 3.0);
double res_01 = mean(2.0, 3.0);

float res_02 = mean<float>(2.0f, 3.0);

// compiler error
float res_03 = mean(2.0f, 3.0);

<source>: In function 'int main()':
<source>:28:24: error: no matching function for call to 'mean(float, double)'
 28 | float res_03 = mean(2.0f, 3.0);
 | ~~~~^~~~~~~~~~~
<source>:10:7: note: candidate: 'template<class Float> requires floating_point<Float> Float mean(Float, Float)'
 10 | Float mean(const Float a, const Float b) {
 | ^~~~
<source>:10:7: note: template argument deduction/substitution failed:
<source>:28:24: note: deduced conflicting types for parameter 'Float' ('float' and 'double')
 28 | float res_03 = mean(2.0f, 3.0);
 | ~~~~^~~~~~~~~~~

22

Multiple placeholder

This fixes the problem of different types for arguments, because
they can be deduced separately.

template <
 std::floating_point FloatA,
 std::floating_point FloatB>
float mean(const FloatA a, const FloatB b) {
 return (a + b) / 2;
}

float res_00 = mean(2.0, 3.0);
double res_01 = mean(2.0, 3.0);
float res_02 = mean(2.0f, 3.0);

But now the return type is fixed to float ...

If we add a placeholder FloatR , since it cannot deduce the return
type, it has to be explicitly indicated in the call!

23

return-type contract

Without constraints this is correct, since the floating point type
used for a will be implicitly cast to int .

int floor(const std::floating_point auto a) {
 return a;
}

Here we are constraining the return type by asking it to be
integral...

std::integral auto floor(const std::floating_point auto a) {
 return a;
}

<source>:29:16: error: deduced return type does not satisfy placeholder constraints
 29 | return a;
 | ^
<source>:29:16: note: constraints not satisfied
<concepts>:102:24: note: the expression 'is_integral_v<_Tp> [with _Tp = float]' evaluated to 'false'
 102 | concept integral = is_integral_v<_Tp>;

24

 Concepts

We didn't see much about concepts, but they already proved to
be very useful!

Just by using them like this, we can easily constrain a type
(better, a placeholder of a type, e.g. auto).

<concept_name> <type_placeholder>

We've already seen them in action in various places for functions,
lastly for return types, but also for arguments...

Are arguments so different from variable definition!? Nope!
Actually we can use concepts also for variable definition!

const std::integral auto res = mean(1.0f, 2.0f);

25

Concepts

(syntax and new language constructs)

26

requires clause

Till now we used concepts without using any new keyword.

template <std::floating_point T>
T foo(const T a, const T b) {}

Actually there are more ways to express the same constraint
using the requires keyword.

Constraining the template

template <class T> requires std::is_floating<T>
T foo(const T a, const T b) {}

Or constraining the function

template <class T>
T foo(const T a, const T b) requires std::is_floating<T> {}

27

requires expression

requires (parameter-list) {
 requirement_1;
 requirement_2;
 ...
 requirement_n;
}

parameter-list like for functions (optional)
Useful to get an instance of a particular type on which to
define requirements

Each requirement has to match in order for a requirement
expression to be true (lines are considered to have AND
between them)

28

Requirements

 SIMPLE: does it build?

a + b;

 TYPE: does it represent a type?

typename A;
typename B::type;

 COMPOUND: does it build and return type?

{ x + b } noexcept -> std::same_as<T>;

 NESTED: does it evaluate true?

requires Same<T*, decltype(&a)>;

29

requires requires

requires clause evaluates a boolean expression

requires expression returns a boolean value

 Wait... I can combine them!

template <class T, class U>
requires requires {
 std::floating_point<T>;
 std::integral<U>;
 } void foo(T a, U b) {
}

...and is it a good idea?

30

NO.

31

requires requires is generally a code smell.

It might be better to define a concept for it instead of having something ad-hoc.

32

Can I define a new custom concept?!?!

33

Yes!

34

concept keyword

Till now we used already defined concept, all the ones already
available in STL.

But we can define our ones!

template <class>
concept concept_name = bool_expression;

Where bool_expression can be whatever returns a compile time
boolean value.

For example a type_trait

template <class T>
concept blas_type = std::is_floating_point_v<T>;

Or...do you recall any other way of returning a bool value, which
expresses a requirement?

35

concept keyword

A requires expression!

template <class T>
concept Num = requires (T a, T b) {
 {a + b} -> std::same_as<T>;
 {a - b} -> std::same_as<T>;
 {a * b} -> std::same_as<T>;
 {-a} -> std::same_as<T>;
};

However we define a concept with the concept keyword, this is
identified as a named concept.

This is how they are actually defined in STL the ones that we used
in our initial examples, e.g. std::floating_point and
std::integral .

36

STL Concepts Library
en.cppreference.com/w/cpp/concepts

(Core, Comparison, Object, Callable, Iterator, Algorithm, Ranges)

37

https://en.cppreference.com/w/cpp/concepts

Concept guidelines

Naming
e.g. is_floating_point becomes floating_point

It should not be used for implementation requirements; it's for
describing a concept.

Writing a good concept, from the "design" point of view, is
difficult. It's good to start with a partial concept (even useful
for debugging) and refine it step by step over time.

38

An example: Num

#include <concepts>
#include <string>
#include <cmath>

template <class T>
concept Num = requires (T a, T b) {
 {a + b} -> std::same_as<T>;
 {a - b} -> std::same_as<T>;
 {a * b} -> std::same_as<T>;
 {-a} -> std::same_as<T>;
};

The generic library that uses Num concept, can be used with
anything that complies with it!

If someone implements BigIntegers ?! If it respects the concept,
the code works .

39

How would you specify cv-qualified concepts?

40

const Concept auto & name

const Concept auto * const name

Concept const auto & name

Concept auto const & name

Concept auto & const name

Concept auto * const res6 = &val;
41

How would you specify cv-qualified
concepts?

 const Concept auto & name

 const Concept auto * const name

 Concept const auto & name

 Concept auto const & name

 Concept auto & const name

 Concept auto * const res6

note:
const applies to the full type (i.e.

constraint helps defining the type, so
it is part of it)

42

Concepts in reality

43

Testing concepts

#include <concepts>
#include <complex>
#include <string>

template <class T>
concept Num = requires (T a, T b) {
 {a + b} -> std::same_as<T>;
 {a - b} -> std::same_as<T>;
 {a * b} -> std::same_as<T>;
 {-a} -> std::same_as<T>;
};

Since they are known at compile-time, we can test it with
static_assert !

static_assert(Num<int>);
static_assert(Num<float>);
static_assert(Num<std::complex<float>>);
static_assert(Num<std::string>, "");

44

Static polymorphism

With Templates+SFINAE we can achieve static polymorphism.

Static polymorphism, contrarily to its dual dynamic
polymorphism, happens at compile time.

It has some nice implications:

errors are raised at compile time

no overhead at runtime (e.g. no virtual function call)

It's nothing new, but concepts really helps in defining better and
easier to maintain "interfaces".

45

Type erasure

Specifically, in STL we have std::function<> , which hides the
type of a functor, allowing us to store in it any function that
complies with the function signature we need (i.e. return type,
arguments types and their order).

46

Recap

47

Recap

Why generic programming?

(TEMPLATE) SFINAE CONCEPTS : Step by Step

Concepts (new syntax and definition of custom concepts)

Applications (static polymorphism, type erasure, ...)

48

Q&A

Alberto Invernizzi
Research Software Engineer @ CSCS

49

50

BONUS

51

Why nested requirements?

52

Why nested requirements?

What the simple requirement a + b do?

requires {
 a + b;
}

1. check if the expression can be compiled;

2. evaluate the expression

53

Why nested requirements?

So, what would you expect from this?

#include <concepts>

template <class... Args>
requires requires {
 sizeof...(Args) > 1;
}
void foo(Args&& ...) {}

int main() {
 foo(1);
 foo(1, 2);
 foo(1, 2, 3);
}

54

Why nested requirements?

So, what would you expect from this?

#include <concepts>

template <class... Args>
requires requires {
 sizeof...(Args) > 1;
}
void foo(Args&& ...) {}

int main() {
 // foo(1); // error
 foo(1, 2);
 foo(1, 2, 3);
}

55

Concepts vs Parameter Pack

56

Concepts vs Parameter Pack

#include <concepts>

template <class... Args>
concept AtLeast2 = requires sizeof...(Args) >= 2;

template <AtLeast2... Args>
void foo(Args&&...) {}

int main() {
 foo(1, 2); // error: AtLeast2<int>
}

With the syntax

template <Concept... Placeholder>

we're applying the type constraint to each single type of the
parameter pack, NOT to the parameter pack as a whole.

57

Concepts vs Parameter Pack

#include <concepts>

template <class... Args>
concept AtLeast2 = requires sizeof...(Args) >= 2;

template <class... Args>
requires AtLeast2<Args...>
void foo(Args&&...) {}

int main() {
 // foo(1); // error: as per requirement
 foo(1, 2);
}

Now we are requiring that the full parameter pack Args...
respect the concept AtLeast2 .

58

