+&@_ CSCS S
\\' ' Centro Svizzero di Calcolo Scientifico E'H Z U r I Ch

Swiss National Supercomputing Centre

Concepts

An introduction

Alberto Invernizzi, CSCS (alberto.invernizzi@cscs.ch)

mailto:alberto.invernizzi@cscs.ch

Why do we need generic programming?

\:o:o CSCS 1 ETHziirich

Strong Typing

C++is a strongly typed language.

This means that each variable is assigned a type at definition, and
it cannot change over time.

This gives a lot of safety, plus it allows the language(=compiler)
to do assumptions and optimize the code.

\?\o}o CSCS 5 ETHziirich

N R g CSCS

Strong typing vs >~ duck typing?

class Person:

def feed(self, food):
print(f"lets eat some {food}")

class Fireplace:
def feed(self, fuel):
print(f"let's burn some {fuel}")

def feed_all(storage, obj):
for element in storage:
obj.feed(element)

storage_basement = ["W®", "%"]
storage_1st_floor = ["=", "w", "<«",]
print("not a big problem... TW")

feed_all(storage_1st_floor, Fireplace())

print("unless you start eating it! ")
feed_all(storage_basement, Person())

not a big problem...
let's burn some =
let's burn some %
let's burn some <«
unless you start eating it! *°
lets eat some W

lets eat some ©

)

ETH:zurich

It's better safe than sorry

\go CSCS 4 ETHziirich

It's better typesafe than sorry

(cit)

\:o:o CSCS 5 ETHziirich

Yeah, but having to write a function/class for every single type
(and combination) does not scale...

int subtract(unsigned int a, unsigned int b);
int subtract(int a, int b);

int subtract(int a, unsigned int b);

float subtract(float a, float b);

Oh! That's why we need generic programming!

1¥,® CSCs 6 ETHzurich

C++ GENERIC PROGRAMMING = TEMPLATE!

template <class I>
T add(T a, T B) {
return a + b;

}

auto add(auto a, auto B) {
return a + b;

}

We can have template specialization for different types and combinations, but the template "placeholder”
accepts anything.

If at template instantiation time, it addresses a problem with the given type (e.g. we call a functon that this
type does not have), it would complain with a build error 3.

Basic template generic programming sounds a bit like "duck typing", but at compile time.

It's slightly better, but in C++ we are not satisfied with sub-optimal solutions..we want the best! ‘&

\:o:o CSCS y ETHziirich

SFINAE

SFINAE allows to disable/enable some overloads at certain
conditions.

template <class T,
std::enable_if_t<
std::is_integral_v<T>
|| std::is_integral_v<T>,
int> = 0>
void add(T a, T b) {
return a + b;

}

With SFINAE we have a finer control on the overload set, in
practice it enables constraining template!

Exactly what we wanted!

\:o} CSCS g ETHziirich

SFINAE is powerful and is
supported by STL

Actually, SFINAE allows us to do many things in a quite rigorous
way.

SFINAE is supported by the STL with:

® std::enable_if
it can be used in many ways to enable or disable a
specialization (class, function, ...)

® #include <type_traits>
it provides some common and useful requirements and

transformers for types

\:o:o CSCS o ETHziirich

SFINAE errors

It's nice that we can figure out at compile time about errors
instead of facing them at runtime...we like it!

It means less error in production, safer code. Nice! &

#include <vector>
#include <algorithm>

struct Number {
long long value_;

s

int main() {
std::vector<int> integers;
std::sort(integers.begin(), integers.end());

std: :vector<Number> numbers;
std::sort(numbers.begin(), numbers.end());

There's an error in the code above... 9

1¥,® CSCs 10 ETHzurich

GCC 13.2 - 79 lines of output

In file included from /opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_algobase.h:71,
from /opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/vector:62,
from :1:
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/predefined_ops.h: In instantiation of 'constexpr bool __gnu_cxx::__ops::_Iter_less_iter::operator()(_Iteratorl, _Iterator2) const [with _Iteratorl = __gnu_cXxXx: _normal_iterator<Number*, std::vector >; _Iterator2 = __gnu_cxXx: _normal_iterator<Number*, std::vector >]':
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_algo.h:1819:14: required from 'void std::__insertion_sort(_RandomAccessIterator, _RandomAccessIterator, _Compare) [with _RandomAccessIterator = __gnu_cxx::__normal_iterator<Number*, vector >; _Compare = __gnu_cxx::__ops::_Iter_less_iter]'
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_algo.h:1859:25: required from 'void std: _final_insertion_sort(_RandomAccessIterator, _RandomAccessIterator, _Compare) [with _RandomAccessIterator = __gnu_cxx::__normal_iterator<Number*, vector >; _Compare = __gnu_cxx::__ops::_Iter_less_iter]"
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_algo.h:1950:31: required from 'void std::__sort(_RandomAccessIterator, _RandomAccessIterator, _Compare) [with _RandomAccessIterator = __gnu_cxx::__normal_iterator<Number*, vector >; _Compare = __gnu_cxx::__ops::_Iter_less_iter]
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl _algo.h:4861:18: required from 'void std::sort(_RAIter, _RAIter) [with _RAIter = __gnu_cxx::__normal_iterator<Number*, vector >]'
:13:14: required from here
l/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/predefined_ops.h:45:23: error: no match for 'operator<' (operand types are 'Number' and 'Number')
45 | { return *__it1 < *__it2; }
| RAeomomomes
In file included from /opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_algobase.h:67:
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_iterator.h:1250:5: note: candidate: 'template bool __gnu_cxx::operator<(const __normal_iterator<_IteratorlL, _Container>&, const __normal_iterator<_IteratorR, _Container>&)
1250 | operator<(const __normal_iterator<_IteratorL, _Container>& __1lhs,
| RAoooooss
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_iterator.h:1250:5: note: template argument deduction/substitution failed:
l/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/predefined_ops.h:45:23: note: 'Number' is not derived from 'const __gnu_cxx::__normal_iterator<_IteratorL, _Container>
45 | { return *__it1 < *__it2; }
| RAeomomomes
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_iterator.h:1258:5: note: candidate: 'template bool __gnu_cxx::operator<(const __normal_iterator<_Iterator, _Container>&, const __normal_iterator<_Iterator, _Container>&)
1258 | operator<(const __normal_iterator<_Iterator, _Container>& __1lhs,
| ANmmme e~
l/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_iterator.h:1258:5: note: template argument deduction/substitution failed:
l/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/predefined_ops.h:45:23: note: 'Number' is not derived from 'const __gnu_cxx::__normal_iterator<_Iterator, _Container>"
45 | { return *__it1 < *__it2; }
[Aommmooms
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/predefined_ops.h: In instantiation of 'bool __gnu_cxx::__ops Val_less_iter::operator()(_Value&, _Iterator) const [with _Value = Number; _Iterator = __gnu_cxx::__normal_iterator<Number*, std::vector >]':
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_algo.h:1799:20: required from 'void std::__unguarded_linear_insert(_RandomAccessIterator, _Compare) [with _RandomAccessIterator = __gnu_cxx::__normal_iterator<Number*, vector >; _Compare = __gnu_cxx::__ops::_Val_less_iter]"
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_algo.h:1827:36: required from 'void std::__insertion_sort(_RandomAccessIterator, _RandomAccessIterator, _Compare) [with _RandomAccessIterator = __gnu_cxx::__normal_iterator<Number*, vector >; _Compare = __gnu_cxx::__ops::_Iter_less_iter]
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_algo.h:1859:25: required from 'void std: _final_insertion_sort(_RandomAccessIterator, _RandomAccessIterator, _Compare) [with _RandomAccessIterator = __gnu_cxx::__normal_iterator<Number*, vector >; _Compare = __gnu_cxx::__ops::_Iter_less_iter]"'
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_algo.h:1950:31: required from 'void std::__sort(_RandomAccessIterator, _RandomAccessIterator, _Compare) [with _RandomAccessIterator = __gnu_cxx::__normal_iterator<Number*, vector >; _Compare = __gnu_cxx::__ops::_Iter_less_iter]
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_algo.h:4861:18: required from 'void std::sort(_RAIter, _RAIter) [with _RAIter = __gnu_cxx::__normal_iterator<Number*, vector >]'
113:14: required from here
l/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/predefined_ops.h:98:22: error: no match for 'operator<' (operand types are 'Number' and 'Number')
98 | { return __val < *__it; }
| P P
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_iterator.h:1250:5: note: candidate: 'template bool __gnu_cxx::operator<(const __normal_iterator<_IteratorlL, _Container>&, const __normal_iterator<_IteratorR, _Container>&)
1250 | operator<(const __normal_iterator<_IteratorL, _Container>& __1lhs,
| RAoooooss
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_iterator.h:1250:5: note: template argument deduction/substitution failed:
l/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/predefined_ops.h:98:22: note: 'Number' is not derived from 'const __gnu_cxx::__normal_iterator<_IteratorL, _Container>
98 | { return __val < *__it; }
| RAommmms
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_iterator.h:1258:5: note: candidate: 'template bool __gnu_cxx::operator<(const __normal_iterator<_Iterator, _Container>&, const __normal_iterator<_Iterator, _Container>&)
1258 | operator<(const __normal_iterator<_Iterator, _Container>& __1lhs,
| ANmmmeeme e~
l/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_iterator.h:1258:5: note: template argument deduction/substitution failed:
l/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/predefined_ops.h:98:22: note: 'Number' is not derived from 'const __gnu_cxx::__normal_iterator<_Iterator, _Container>"
98 | { return __val < *__it; }
| ~
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/predefined _ops.h: In instantiation of 'bool __gnu_cxx::__ops::_Iter_less _val::operator()(_Iterator, _Value&) const [with _Iterator = __gnu_cxx::__normal _iterator<Number*, std::vector >; _Value = Number]':
/opt/compiler-explorer/gcc-13.2.60/include/c++/13.2.0/bits/stl _heap.h:140:48: required from 'void std::__push_heap(_RandomAccessIterator, _Distance, _Distance, _Tp, _Compare&) [with _RandomAccessIterator = __gnu_cxx::__normal iterator<Number*, vector >; _Distance = long int; _Tp = Number; _Compare = __gnu_cxx::__ops::_Iter_less_val]'
l/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_heap.h:247:23: required from 'void std::__adjust_heap(_RandomAccessIterator, _Distance, _Distance, _Tp, _Compare) [with _RandomAccessIterator = __gnu_cxx::__normal_iterator<Number*, vector >; _Distance = long int; _Tp = Number; _Compare = __gnu_cXX::__o0ps Iter_less_iter]
l/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_heap.h:356:22: required from 'void std::__make_heap(_RandomAccessIterator, _RandomAccessIterator, _Compare&) [with _RandomAccessIterator = __gnu_cxx::__normal_iterator<Number*, vector >; _Compare = __gnu_cxx::__ops::_Iter_less_iter]
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl _algo.h:1635:23: required from 'void std __heap_select(_RandomAccessIterator, _RandomAccessIterator, _RandomAccessIterator, _Compare) [with _RandomAccessIterator = __gnu_cxx::__normal_iterator<Number*, vector >; _Compare = __gnu_cxx::__ops::_Iter_less_iter]
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_algo.h:1910:25: required from 'void std::__partial_sort(_RandomAccessIterator, _RandomAccessIterator, _RandomAccessIterator, _Compare) [with _RandomAccessIterator = __gnu_cxx::__normal_iterator<Number*, vector >; _Compare = __gnu_cxx::__ops::_Iter_less_iter]'
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_algo.h:1926:27: required from 'void std _introsort_loop(_RandomAccessIterator, _RandomAccessIterator, _Size, _Compare) [with _RandomAccessIterator = __gnu_cxx::__normal_iterator<Number*, vector >; _Size = long int; _Compare = __gnu_cxx::__ops::_Iter_less_iter]'
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_algo.h:1947:25: required from 'void std: _sort(_RandomAccessIterator, _RandomAccessIterator, _Compare) [with _RandomAccessIterator = __gnu_cxx::__normal_iterator<Number*, vector >; _Compare = __gnu_cxx::__ops::_Iter_less_iter]'
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_algo.h:4861:18: required from 'void std::sort(_RAIter, _RAIter) [with _RAIter = __gnu_cxx::__normal_iterator<Number*, vector >]'
2d@adaln required from here
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/predefined_ops.h:69:22: error: no match for 'operator<' (operand types are 'Number' and 'Number')
69 | { return *__it < val; }
e T
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_iterator.h:1250:5: note: candidate: 'template bool __gnu_cxx::operator<(const __normal_iterator<_IteratorL, _Container>&, const __normal_iterator<_IteratorR, _Container>&)
1250 | operator<(const __normal_iterator<_IteratorL, _Container>& __1lhs,
| Aommmooms
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_iterator.h:1250:5: note: template argument deduction/substitution failed:
l/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/predefined_ops.h:69:22: note: 'Number' is not derived from 'const __gnu_cxx::__normal_iterator<_IteratorL, _Container>"
69 | { return *__it < val; }
| ~~~~~~ Ammme e e~
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_iterator.h:1258:5: note: candidate: 'template bool __gnu_cxx::operator<(const __normal_iterator<_Iterator, _Container>&, const __normal_iterator<_Iterator, _Container>&)
1258 | operator<(const __normal_iterator<_Iterator, _Container>& __1lhs,
ANeme e~
/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/stl_iterator.h:1258:5: note: template argument deduction/substitution failed:
l/opt/compiler-explorer/gcc-13.2.0/include/c++/13.2.0/bits/predefined_ops.h:69:22: note: 'Number' is not derived from 'const __gnu_cxx::__normal_iterator<_Iterator, _Container>"
69 | { return *__it < val; }
| ~~~~~~ Amme e~
Compiler returned: 1

\3} CSCS 11 ETHziirich

/

Clang 17.0.1 - (extent of) 9 errors, 200+ lines of output

/opt/compiler-explorer/gcc-13.2.0/1ib/gcc/x86_64-1inux-gnu/13.2.06/../../../../include/c++/13.2.0/bits/predefined_ops.h:69:22:

expression ('Number' and 'Number')
69 | { return *__it < __val; }
N ~~~~—~

/opt/compiler-explorer/gcc-13.2.0/1ib/gcc/x86_64-1inux-gnu/13.2.0/../../../../include/c++/13.2.0/bits/stl_heap.h:140:42: note:

*

__normal_iterator<Number *,
__comp);

template specialization 'std::
1635 | std::__make_heap(__first,
| A

/opt/compiler-explorer/gcc-13.2.0/1ib/gcc/x86_64-1inux-gnu/13.2.0/../../../../include/c++/13.2.0/bits/stl_algo.h:1910:12:

__make_heap<__gnu_cxx::
__middle,

std::vector>, __gnu_cCXxX::

1947 | std::__introsort_loop(__first,
| N

/opt/compiler-explorer/gcc-13.2.0/1ib/gcc/x86_64-1inux-gnu/13.2.0/../../../../include/c++/13.2.0/bits/stl_algo.h:4861:12:

template specialization 'std::__sort<__gnu_cXxXx:: *, std::vector>, __gnu_cxx::

__normal_iterator<Number *,
4861 | std::__sort(__first, __last, __gnu_cxx::__ops::__iter_less_iter());
| A

__last,

__ops::_Iter_less_iter>"'

template specialization '__gnu_cxx::__ops::_Iter_less_val::operator()<__gnu_cxx::__normal_iterator<Number *, std::vector>, Number>' requested here
140 | while (__holeIndex > __topIndex && __comp(__first + __parent, __value))
| A
/opt/compiler-explorer/gcc-13.2.0/1ib/gcc/x86_64-1inux-gnu/13.2.0/../../../../1include/c++/13.2.0/bits/stl_heap.h:247:12: note: in instantiation of function
template specialization 'std::__push_heap<__gnu_cxx::__normal_iterator<Number *, std::vector>, long, Number, __gnu_cxX::__ops::_Iter_less_val>' requested here
247 | std::__push_heap(__first, __holeIndex, __topIndex,
| A
/opt/compiler-explorer/gcc-13.2.0/1ib/gcc/x86_64-1inux-gnu/13.2.0/../../../../include/c++/13.2.0/bits/stl_heap.h:356:9: note: in instantiation of function template

specialization 'std::__adjust_heap<__gnu_cxx::__normal_iterator<Number *, std::vector>, long, Number, __gnu_cxx::__ops::_Iter_
356 | std::__adjust_heap(__first, __parent, __len, _GLIBCXX_MOVE(__value),
| A
/opt/compiler-explorer/gcc-13.2.0/1ib/gcc/x86_64-1inux-gnu/13.2.0/../../../../include/c++/13.2.0/bits/stl_algo.h:1635:12: note:

__ops::_Iter_less_iter>"'

note:

template specialization 'std::__heap_select<__gnu_cxx::__normal_iterator<Number *, std::vector>, __gnu_cxx::__ops::_Iter_less_
1910 | std::__heap_select(__first, __middle, __last, __comp);

| A
/opt/compiler-explorer/gcc-13.2.0/1ib/gcc/x86_64-1inux-gnu/13.2.0/../../../../include/c++/13.2.0/bits/stl_algo.h:1926:13: note:
template specialization 'std::__partial_sort<__gnu_cxx::__normal_iterator<Number *, std::vector>, __gnu_cxx::__ops::_Iter_less_iter>"'
1926 | std::__partial_sort(__first, __last, __last, __comp);

| A
/opt/compiler-explorer/gcc-13.2.0/1ib/gcc/x86_64-1inux-gnu/13.2.0/../../../../include/c++/13.2.0/bits/stl_algo.h:1947:9: note:
template specialization 'std::__introsort_loop<__gnu_cxX::__normal_iterator<Number *, std::vector>, long, __QgnU_CXX::__OpS::

_Iter_less _iter>"

note:

error: invalid operands to binary

in instantiation of function

less_iter>' requested here

in instantiation of function
requested here

in instantiation of function

iter>' requested here

in instantiation of function
requested here

in instantiation of function
requested here

in instantiation of function
requested here

<#@® CSCSs 12

ETH:zurich

30
\\0‘0 CSCS

® Every rose has its torn

| haven't said that SFINAE was fantastic...

Don't get me wrong: it is a super tool, but it looks more like a
workaround than a proper tool of the language.

The typical "it's not a bug is a feature"” applied to the C++
language. Morover, SFINAE has some limitations (e.g. there is no
place for it in constructors).

Different techinques and language evolutions overcome some of
this limitations improving this situation:
tag dispatching, constexpr , and ...

CONCEPTS
C++20™

13

ETH:zurich

Concepts

e nhothing dramatically new
e it can be seen as a more readable way for SFINAE constraints
e more readable code, and clearer error messages

e that does not look like an incident
They introduce some new language keywords and construct:

® requires

e concept

\:o:o CSCS 14 ETHziirich

From templates to concepts in three moves!

Ready?

\go CSCS 15 ETHziirich

N A g CSCS

Template

#include <type_traits>
#include <vector>

template <class Float>
Float mean(const Float a, const Float b) {

return (a + b) / 2;

}

float res_00 = mean(2.0, 3.0); // 2.5
double res_01 = mean(2.0, 3.0); // 2.5

float res_02 = mean(1, 2); // 1

int res_03 = mean('a', 'd'); // 98 (= 'b")

// compile error: std::vector does not have '+
std::vector<float> res_v = mean(

std::vector<float>{1,2,3},
std::vector<float>{4,5,6});

no code duplication thanks to templates!

one fits all...unconstrained!
error message is not straightforward

16

ETH:zurich

SFINAE

#include <type_traits>

template <class Float,
class = std::enable_if_t<std::is_floating_point_v<Float>>>
Float mean(const Float a, const Float b) {
return (a + b) / 2;
}

float res_00 = mean(2.0, 3.90);
double res_01 = mean(2.0, 3.90);

// compile error
// float res_02 = mean(1, 2);
// int res_83 = mean('a', 'd');

error: no type named 'type' in 'struct std::enable_if<false, void>'
2514 | using enable_if_t = typename enable_if<_Cond, _Tp>::type;

“® Float is now constrained!

code readability is affected

p ™ error message is "a bit" cryptic o
1¥,® CSCs 17 ETH:zurich

Concepts

#include <concepts>

template <std::floating_point Float>

Float mean(const Float a, const Float b) {
return (a + b) / 2;

}

float res_00 = mean(2.0, 3.0);
double res_01 = mean(2.6, 3.0);

// compile error
// float res_02 = mean(1, 2);

error: no matching function for call to 'mean(int, int)'’
15 | float res_02 = mean(1, 2);

| ~~AIAY A

~NIANIANIAY

required for the satisfaction of 'floating_point<Float>' [with Float = int]
note: the expression 'is_floating_point_v<_Tp> [with _Tp = int]' evaluated to 'false’
111 | concept floating_point = is_floating_point_v<_Tp>;

| A

NI N N0 180 180 18D 10 18D N0 18D 1N 1N 1N 1N 1N 8D 1N NI N NI N NI N

“2 same semantic
better error message

\?“ CSCS better code readability - ETH 7iirich

SFINAE [3 CONCEPTS
SFINAE Concepts

template <class Float, template <std::floating_point Float>

class = std::enable_if_t<std::is_floating_point_v<Float>>> Float mean(const Float a, const Float b) {
Float mean(const Float a, const Float b) {
return (a + b) / 2;

return (a + b) / 2;

} }

We didn't introduce any new language keyword (yet), and we already achieved a more terse and readable
code, in addition to better error messages, expressing exactly the same thing!

A couple of notes:

SFINAE Concepts

STL definitions #include <type_traits> #include <concepts>

Names verb-like (e.g. is_floating_point) | adjective-like (e.g. floating_point)
<& .
&# @ CSCS 19 ETH:zurich

S 4

Exploring Concepts

<& .
1¥,® CSCs 20 ETH:zurich

Syntactic variants

template <std::floating_point Float>
Float mean(const Float a, const Float b) {

return (a + b) / 2;

}

In this way we defined a named placeholder Float, on which we
constrain Float tobe a std::floating_point.

This syntax can be used directly "in-place" using auto for
creating the placeholder

std::floating_point auto mean(
const std::floating_point auto a,
const std::floating_point auto b) {

return (a + b) / 2;

Are they semantically the same?
9 hint: how many placeholders there are?

ETH:zurich

W@ cscs 21

template <std::floating_point Float>
Float mean(const Float a, const Float b) {
return (a + b) / 2;

}

float res_00 = mean(2.0, 3.0);
double res_01 = mean(2.0, 3.90);

float res_02 = mean<float>(2.6f, 3.0);

// compiler error
float res_03 = mean(2.0f, 3.0);

<source>: In function 'int main()':
<source>:28:24: error: no matching function for call to 'mean(float, double)’
28 | float res_03 = mean(2.0f, 3.0);

| ~~~~A ONIONIONIONINNINNIINIININI N

10 | Float mean(const Float a, const Float b) {

| A~~~

<source>:10:7: note: candidate: 'template<class Float> requires floating_point<Float> Float mean(Float, Float)'

<source>:10:7:. note: template argument deduction/substitution failed:
<source>:28:24: note: deduced conflicting types for parameter 'Float' ('float' and 'double')
28 | float res_03 = mean(2.0f, 3.0);
| A i
¥ @ CSCS 29 ETH:zurich

S 4

Multiple placeholder

This fixes the problem of different types for arguments, because
they can be deduced separately.

template <
std::floating_point FloatA,
std::floating_point FloatB>

float mean(const FloatA a, const FloatB b) {
return (a + b) / 2;

}

float res_00 = mean(2.0, 3.0);
double res_01 = mean(2.6, 3.0);
float res_02 = mean(2.0f, 3.0);

But now the return type is fixed to float ...

If we add a placeholder FloatR, since it cannot deduce the return
type, it has to be explicitly indicated in the call!

\:o} CSCS 93 ETHziirich

N A g CSCS

return-type contract

Without constraints this is correct, since the floating point type
used for a will be implicitly cast to int.

int floor(const std::floating_point auto a) {
return a;

}

Here we are constraining the return type by asking it to be
integral...

std::integral auto floor(const std::floating_point auto a) {
return a;

}

<source>:29:16: error: deduced return type does not satisfy placeholder constraints

29 | return a;
| A

<source>:29:16: note: constraints not satisfied

<concepts>:102:24: note: the expression 'is_integral_v<_Tp> [with _Tp = float]' evaluated to 'false’

102 | concept integral = is_integral_v<_Tp>;

24

ETH:zurich

¥ Concepts ¥

We didn't see much about concepts, but they already proved to
be very useful! ©

Just by using them like this, we can easily constrain a type
(better, a placeholder of a type, e.g. auto).

<concept_name> <type_placeholder>

We've already seen them in action in various places for functions,
lastly for return types, but also for arguments...

Are arguments so different from variable definition!? Nope!
Actually we can use concepts also for variable definition!

const std::integral auto res = mean(1.6f, 2.06f);

\go CSCS ot ETHziirich

Concepts

(syntax and new language constructs)

\go CSCS 24 ETHziirich

requires clause

Till now we used concepts without using any new keyword.

template <std::floating_point T>
T foo(const T a, const T b) {}

Actually there are more ways to express the same constraint
using the requires keyword.

Constraining the template

template <class T> requires std::is_floating<T>
T foo(const T a, const T b) {}

Or constraining the function

template <class I>
T foo(const T a, const T b) requires std::is_floating<T> {}

1¥,® CSCs 27 ETHzurich

requires expression

requires (parameter-list) {
requirement_1;
requirement_2;

requirement_n;

e parameter-list like for functions (optional)
Useful to get an instance of a particular type on which to
define requirements

e Each requirement has to match in order for a requirement
expression to be true (lines are considered to have AND
between them)

\3\0:0 CSCS)8 ETHziirich

P
\\0‘0 CSCS

Requirements

BB SIMPLE: does it build?

a + b;

BA TYPE: does it represent a type?

typename A;
typename B::type;

E] COMPOUND: does it build and return type?

{ x + b } noexcept -> std::same_as<T>;

I3 NESTED: does it evaluate true?

requires Same<T#*, decltype(&a)>;

29

ETH:zurich

requires requires

e requires clause evaluates a boolean expression

® requires expression returns a boolean value

Wait... | can combine them!

template <class I, class U>
requires requires {
std::floating_point<T>;
std::integral<U>;
} void foo(T a, U b) {

...and is it a good idea?

\3\0:0 CSCS 30 ETHziirich

NO.

<& .
1¥,® CSCs 31 ETH:zurich

requires requires is generally a code smell.

It might be better to define a concept for it instead of having something ad-hoc.

\:0:0 CSCS 39 ETHziirich

Can |l define a new custom concept?!?!

<& .
1¥,® CSCs 33 ETH:zurich

Yes!

<& .
1¥,® CSCs 34 ETH:zurich

concept keyword

Till now we used already defined concept, all the ones already
available in STL.

But we can define our ones!

template <class>
concept concept_name = bool_expression;

Where bool_expression can be whatever returns a compile time
boolean value.

For example a type_trait

template <class I>
concept blas_type

std::is_floating_point_v<T>;

Or...do you recall any other way of returning a bool value, which
expresses a requirement?

1¥,® CSCs 35 ETHzurich

concept keyword

A requires expression!

template <class T>

concept Num = requires (T a, T b) {
{a + b} -> std::same_as<T>;
{a - b} -> std::same_as<T>;
{a * b} -> std::same_as<T>;
{-a} -> std::same_as<T>;

s

However we define a concept with the concept keyword, this is
identified as a named concept.

This is how they are actually defined in STL the ones that we used
in our initial examples, e.g. std::floating_point and
std::integral.

\3\0:0 CSCS 24 ETHziirich

STL Concepts Library

en.cppreference.com/w/cpp/concepts

(Core, Comparison, Object, Callable, Iterator, Algorithm, Ranges)

\?\o:-o CSCS 37 ETHziirich

https://en.cppreference.com/w/cpp/concepts

30
\\0‘0 CSCS

Concept guidelines

e Naming
e.g. is_floating_point becomes floating_point

e |t should not be used for implementation requirements; it's for
describing a concept.

e Writing a good concept, from the "design" point of view, is
difficult. It's good to start with a partial concept (even useful
for debugging) and refine it step by step over time.

38

ETH:zurich

An example: Num

#include <concepts>
#include <string>
#include <cmath>

template <class T>

concept Num = requires (T a, T b) {
{a + b} -> std::same_as<T>;
{a - b} -> std::same_as<T>;
{a * b} -> std::same_as<T>;
{-a} -> std::same_as<T>;

s

The generic library that uses Num concept, can be used with
anything that complies with it!

If someone implements BigIntegers ?! If it respects the concept,
the code works ™,

1¥,® CSCs 39 ETHzurich

const Concept auto & name Concept auto const & name

const Concept auto * const name Concept auto & const name

Concept const auto & name Concept auto * const resé = &val;

RIGHT-TO-LEFT

How would you specify cv-qualified
concepts?

o4 const Concept auto & name

¥ const Concept auto * const name

X Concept const auto & name

o4 Concept auto const & name

X Concept auto & const name

o4 Concept auto * const resé6

note:
const applies to the full type (i.e.
constraint helps defining the type, so
it is part of it)

e cscs . READINGSIT IIElI'S

@

Concepts in reality

<& .
1¥,® CSCs 43 ETH:zurich

Testing concepts

#include <concepts>
#include <complex>
#include <string>

template <class T>

concept Num = requires (T a, T b) {
{a + b} -> std::same_as<T>;
{a - b} -> std::same_as<T>;
{a * b} -> std::same_as<T>;
{-a} -> std::same_as<T>;

s

Since they are known at compile-time, we can test it with
static_assert !

static_assert(Num<int>);
static_assert(Num<float>);
static_assert(Num<std::complex<float>>);
static_assert(Num<std::string>, "");

1¥,® CSCs 44 ETHzurich

Static polymorphism
With Templates+SFINAE we can achieve static polymorphism.

Static polymorphism, contrarily to its dual dynamic
polymorphism, happens at compile time.

It has some nice implications:

e errors are raised at compile time

e no overhead at runtime (e.g. no virtual function call)

It's nothing new, but concepts really helps in defining better and
easier to maintain "interfaces".

\?\o:-o CSCS 45 ETHziirich

Type erasure

Specifically, in STL we have std::function<>, which hides the
type of a functor, allowing us to store in it any function that
complies with the function signature we need (i.e. return type,
arguments types and their order).

\:o:o CSCS 46 ETHziirich

Recap

<& .
1¥,® CSCs 47 ETH:zurich

Recap

e Why generic programming?
e (TEMPLATE =) SFINAE = CONCEPTS : Step by Step
e Concepts (new syntax and definition of custom concepts)

e Applications (static polymorphism, type erasure, ...)

¥% cscs 48

ETH:zurich

Q&A

Alberto Invernizzi
Research Software Engineer @ CSCS

\go CSCS 49 ETHziirich

<& .
1¥,® CSCs 50 ETH:zurich

BONUS

<& .
1¥,® CSCs 51 ETH:zurich

Why nested requirements?

<& .
1¥,® CSCs 59 ETH:zurich

Why nested requirements?

What the simple requirement a + b do?

requires {
a+ b;

}

1. check if the expression can be compiled;

2. evaluate the expression

\3\010 CSCS £q ETHziirich

Why nested requirements?

So, what would you expect from this?

#include <concepts>

template <class... Args>

requires requires {
sizeof...(Args) > 1;

}

void foo(Args&& ...) {}

int main() {

foo(1);
foo(1, 2);
foo(1, 2, 3);

\3\0:0 CSCS 54 ETHziirich

Why nested requirements?

So, what would you expect from this?

#include <concepts>

template <class... Args>

requires requires {
sizeof...(Args) > 1;

}

void foo(Args&& ...) {}

int main() {

// foo(1); // error
foo(1, 2);
foo(1, 2, 3);

\:o} CSCS 5 ETHziirich

Concepts vs Parameter Pack

<& .
1¥,® CSCs 56 ETH:zurich

Concepts vs Parameter Pack

#include <concepts>

template <class... Args>
concept AtlLeast2 = requires sizeof...(Args) >= 2;

template <AtLeast2... Args>
void foo(Args&&...) {}

int main() {
foo(1, 2); // error: AtlLeast2<int>

}

With the syntax

template <Concept... Placeholder>

we're applying the type constraint to each single type of the
parameter pack, NOT to the parameter pack as a whole.

\:0:0 CSCS £ ETHziirich

N A g CSCS

Concepts vs Parameter Pack

#include <concepts>

template <class... Args>
concept AtlLeast2 = requires sizeof...(Args) >= 2;

template <class... Args>
requires AtlLeast2<Args...>
void foo(Args&&...) {}

int main() {

// foo(1); // error: as per requirement
foo(1, 2);

Now we are requiring that the full parameter pack Args...
respect the concept AtlLeast2 .

58

ETH:zurich

