+&@_ CSCS S
\' ' Centro Svizzero di Calcolo Scientifico E'" Z U r I Ch

\' Swiss National Supercomputing Centre

1T

Advanced C++ Course 2023

Generic programming tools: CPOs
CSCS

Customization mechanisms for generic interfaces

When writing generic algorithms and libraries

e information needs to be transferred from the user to library (author)
e compile time:
o (syntactical) correctness
o check type requirements (function signature, type introspection, concept)
o compute associated types (traits, decltype)
e run time:
o object properties (domain specific)
e customization

o user must be able to easily customize the default

\?\o}o CSCS 1 ETHziirich

Customization mechanism: interface wish list

What we would like to have: customization of interfaces (functions) which

e are non-intrusive

e are explicitly opt-in

e prevent incorrect opt-in (error when wrong signature)

e are able to provide default implementations

e are simple to correctly invoke customized version when default exist

e are hard to incorrectly invoke the default when customized exist

e are clear in their intent when looking at the code (what and how to customize if at all)

e are easy to verify for a given type

1. https://brevzin.github.io/c++/2020/12/01/tag-invoke/

\?\o:-o CSCS 5 ETHziirich

Dynamic Polymorphism

e traditional way of defining interface in OOP

e works by using virtual functionsin c++

Example:

struct base { can have default implementation or not (pure virtual
virtual void foo(int) = 0; function)

}i

struct derived : base { override keyword makes sure that we actually
virtual void foo(int) override; Customize the interface

}i .

(use -Wsuggest-override)

\:o} CSCS 3 ETHziirich

How are we doing?

virtual function

non-intrusive no | inheritance from base

explicitly opt-in yves | have to inherit

prevents incorrect opt-in yes | with override

provides default implementations | yes | non-pure base class

simple to invoke yes | just call from pointer-to-base

hard to incorrectly invoke yes | just call from pointer-to-base

code shows intent yves | virtual functions show customization
easy to verify for a given type yes | when derived* is convertible to base*
ssues

e intrusive!

e otherwise fine?

30
\\0‘0 CSCS

ETH:zurich

Other issues

e virtual function overhead
e usually requires heap allocation

e what if return type of interface is dependent on type?

struct array_like {
virtual unsigned long size() const = 0;
virtual bool operator==(array_like const&) const = 0;
virtual auto operator[](unsigned long) -> ???7?;

% what about this?

1¥,® CSCs 5 ETHzurich

e array_like is parametrized interface e inherit from array_like<T> ?

template<typename T>
struct array_like { struct my_complex_array : array_like<std::complex> {
virtual unsigned long size() const = 0 virtual unsigned long size() const override;

virtual bool operator==(array_like const&) const = 0: virtual bool operator==(array_like const&) const override;
virtual T& operator[](unsigned long) = O: virtual std::complex& operator[](unsigned long) override;

}i }
e virtual call overheads persist
e introduced many interfaces:
array_like<std::complex>, array_like<double> eftc
¥ @ CSCS 6 ETH:zurich

S 4

Static Polymorphism: Class Template Specialization

e no additional runtime overhead, usually doesn't require allocation

// A formatter for objects of type T. e formatter class definition for fmt::format : pretty

template <typename T, empty

typename Char = char,
typename Enable = void> e from documentation: needs parse and format

struct formatter { .
// A deleted default constructor indicates function

// a disabled formatter.
formatter() = delete;

'

\go CSCS y ETHziirich

class template
specialization

non-intrusive yes can specialize any class

explicitly opt-in yes works only through specialization

prevents incorrect opt-in partially | may still compile, but may not work correctly (concept could help)
!orovides defzj\ult no not possible (need to specialize whole class)

implementations

simple to invoke yes just call from formatter<T>::format

hard to incorrectly invoke no formatter<Us>::format may just work

class template and Enable is a hint that it needs to be specialized

code shows intent no
(concept could help)

easy to verify for a given

type no can check whether specialization exists (concept could help)

\go CSCS g ETHziirich

Static Polymorphism: Customization Points

e familiar from standard library functions such as std: :swap
e no additional runtime overhead, usually doesn't require allocation
e work through ADL: argument-dependent (name) lookup

e need specific incantation:

using namespace std; make standard Nnamespace available
UEElE, B) unqualified call to swap (note: not std::swap(a, b))

make interface available through (hidden) friend
member funcion (technical reason: reduce set of

functions that can be found by ADL)
e std::swap can also handle types without explicit

swap interface

struct x {

int data; . .
o move constructible, move assignable

friend void swap(x& a, x& b) { o is a default implementation
b.data = std::exchange(a.data, b.data);

}
@& . ETH zirich

customization points

non-intrusive yes can overload swap for any type

explicitly opt-in no opt-inis implicit

brevents incorrect opt-in bartially hmealylg)still compile, but may not work correctly (concept could
!orovides defzj\ult yes std::swap(...) works for many types out of the box
implementations

simple to invoke kinda need to remember to make namespace available

hard to incorrectly invoke no use std::swap(...) by mistake, ADL woes

code shows intent no std::swap IS just a function template in the standard library
easy to verify for a given type no only with separate concept

\:o:o CSCS 10 ETHziirich

Intermezzo: What is ADL again?

You don’t have to qualify the namespace for functions if one or more argument types are defined in the
namespace of the function.
-- Nicolai Josuttis, The C++ Standard Library: A Tutorial and Reference

e was introduced to solve a specific problem with operators

namespace n {
struct A {
A operator++();

}i
std::ostream& operator<<(std::ostream&, A const&);
}
n::A a; // create object from namespace n
at+; // this is ok -> call member function on a

std::cout << a; // how to find the right function (operator)?

e solution: whenever we see an unqualified call to a possibly overloaded operator look all the namespaces
associated with the types of the arguments to the operator

o here: global namespace, namespace std and namespace n

\:o} CSCS 11 ETHziirich

e ADL was extended to non-operator functions such
as swap and get_next

o reasoning x.foo() should be expressable as
foo(x) instead of X::foo(x)

e when does ADL apply?

o name lookup (building a candidate set) for an
unqualified function call (no :: -qualification)

e when does ADL not apply?
o not a function call: (foo) (x)

o callee is not a function

lookup rules

e |ooks only at the types of the arguments (after
resolving type aliases)

e template arguments are ignored (do not add
namespace of template argument types)

30
\\0‘0 CSCS

e all arguments are considered in no particular order

o produces zero or more associated types and
associated namespaces, via a complicated ad-
hoc process

o for associated types: consider only the
(namespace-scope) friends

namespace N {
struct A {
enum E { EO };
friend void f(E);
static void g(E);

}

namespace M {
void f(int);
void g(int);
void test() {
N::A::E e;
f(e); // ADL considers N::f (friend of N::A)
g(e); // ADL does not consider N::A::g

ETH:zurich

e algorithm for lookup:

o create sets of associated namespaces and associated types for each argument

o merge them all together (and add our current namespace and all its parents)

o find declarations of the name foo in any of these namespaces

o do overload resolution for this call

e When does ADL go wrong?

// print library
namespace 1lib1 {
template <typename T>
void print(T x) {
std::cout << x << std::endl;

}

template <typename T>
void print_n(T x, unsigned n) {
for (unsigned i = 0; i < n; ++i)
print(x);

-
\\‘? hgﬁggackoverﬂow.com/questions/2958648/What—are—the—pitfalIs—of—adl

13

// other library
namespace 1lib2 {
struct unicorn { /* unicorn stuff goes here */ };

std::ostream& operator<<(std::ostream& os, unicorn x) { return os; }

// Don't ever call this! It just crashes! I don't know why I wrote it!
void print(unicorn) { *(int*)0 = 42; }

int main() {
1ib2::unicorn x;
lib1::print_n(x, 10); // boom

e form point of view of 1ib1 : we have no way of
knowing what function will be called by print_n a
priori

ETH:zurich

Static Polymorphism: Customization Point Objects (CPOs)

e idea: separate
o the piece that the user needs to specialize (found by ADL) and
o the piece that the user needs to invoke (must not specialize, ADL turned off)

e consider this helper function:

namespace std2 {
template<class A, class B>
requires /* swappable constraints */
void swap2(A& a, B& b) {
using std: :swap;
swap(a, b);

e what would we gain?

using namespace std2; ADL may break this code!
swap2(a, b);

\3\010 CSCS 14 ETHziirich

e switch off ADL by using objects (remember ADL does not apply for non-functions)

namespace std2 {
namespace hidden { struct X {
int data;
// "poison pill"” to hide overloads of swap() that might be found in parent namespace . ’.
// we want to limit to only finding overloads by ADL. friend void Swap(x& a, X & b) {
void swap() = delete; .. .
b.data = std::exchange(a.data, b.data);
// define function object with operator() that forwards to call to unqualified 'swap()’ }
struct swap_helper {
template<class A, class B> } ;
requires /* swappable constraints */
void operator()(A& a, B& b) const {
using std: :swap;
swap(a, b);
}
i
}
// use inline namespace to avoid potential conflicts with hidden friend functions
// which add functions with name 'swap' into enclosing namespace
inline namespace swap_cpo {
inline constexpr hidden::swap_helper swap;
}
}
e now both ways work
using namespace std2; std2::swap(a, b);

swap(a, b);

& important gain: we can now check constraints on types (concept checking) o
@ CSCS 15 ETH-urich

4

A\

.

customization points objects

non-intrusive yes can overload swap for any type

explicitly opt-in no opt-inis implicit

prevents incorrect opt-in partially | library author can write checks (failure is earlier)
provides default implementations | yes swap_helper /s a default implementation

simple to invoke yes both qualified and unqualified calls work

hard to incorrectly invoke yes qualified call works equally well

code shows intent no hard to see from objects

easy to verify for a given type partially | with separate concept

other issues

e ususally requires more code

e customization point objects reserve their identifier globally (two libraries with same CPO name may clash)

\:o:o CSCS 16 ETHziirich

Static Polymorphism: tag_invoke

e Solve shortcommings of CPOs

o do not claim identifier name globally (which is needed for ADL)

o handle (type-erased) wrapper types transparently

e idea: use one CPO called tag_invoke which takes an arbitrary CPO as argument

implementation

use

namespace hidden {
struct tag_invoke_fn {
template<typename CPO, typename... Args>

-> decltype(tag_invoke((CPO &&) cpo, (Args &&) args...)) {
return tag_invoke((CPO &&) cpo, (Args &&) args...);

}s
}

inline constexpr hidden::tag_invoke_fn tag_invoke{};

// some more helper traits and values:
template <auto& CPO>
using tag_t = ...;

template <typename CPO, typename... Args>
using tag_invoke_result_t = ...;

template <typename CPO, typename... Args>
inline constexpr bool is_tag_invocable_v = ...;

S8

constexpr auto operator()(CPO cpo, Args&&... args) const /* noexcept clause */

%

17

namespace std2 {
// simplified way to write CPO
inline constexpr struct swap_fn {
template<typename A, typename B>
requires /#* swappable constraints */
auto operator()(A& a, B& b) const /* noexcept clause */
-> decltype(tag_invoke(*this, a, b)) { // trailing return type SFINAE
return tag_invoke(*this, a, b);
}
+ swap{};
}

struct x {
int data;
friend void tag_invoke(tag_t<std2::swap>, x& a, x& b) {
b.data = std::exchange(a.data, b.data);
}
}

ch

e both ways work

using namespace std2;
swap(a, b);

e globally reserve a single name: tag_invoke

3
\\0‘0 CSCS

18

std2::swap(a, b);

ETH:zurich

non-intrusive yes can overload tag_invoke for any type

explicitly opt-in yes opt-inis explicit

prevents incorrect opt-in partially | library author can write checks (failure is earlier)
provides default implementations | yes by adding overload for operator() inour CPO
simple to invoke yes qualified call

hard to incorrectly invoke yes qualified call

code shows intent partially | recognize tag_invoke friend function

easy to verify for a given type partially | with separate concept

other issues

e ususally requires similar amount of code than CPOs

e not yet standard (tag_invoke requires some machinery behind the scenes)

\:o:o CSCS 19 ETHziirich

Conclusions

e many nuances to consider
e ADL canlead to subtle errors
e |lack of language feature requires elaborate library (workarounds)
e tag_invoke is best option for now
o if we care about a few free functions
e if we need to create a whole type for an interface

o other options (inherit mixins with CRTP, class template specializations etc)

\:o:o CSCS 20 ETHziirich

References

e https://www.open-std.org/jtcl/sc22/wg21/docs/papers/2019/p1895r0.pdf

e https://brevzin.github.io/c++/2020/12/19/cpo-niebloid/

e https://brevzin.github.io/c++/2020/12/01/tag-invoke/

o https://quuxplusone.github.io/blog/2019/08/02/the-tough-guide-to-cpp-acronyms/#cpo
o https://quuxplusone.github.io/blog/2019/04/26/what-is-adl/

o https://www.fi.muni.cz/pv264/files/pv264 s06b niebloids.pdf

\:o} CSCS 21 ETHziirich

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1895r0.pdf
https://brevzin.github.io/c++/2020/12/19/cpo-niebloid/
https://brevzin.github.io/c++/2020/12/01/tag-invoke/
https://quuxplusone.github.io/blog/2019/08/02/the-tough-guide-to-cpp-acronyms/#cpo
https://quuxplusone.github.io/blog/2019/04/26/what-is-adl/
https://www.fi.muni.cz/pv264/files/pv264_s06b_niebloids.pdf

