
Advanced C++ Course 2023

Generic programming tools: CPOs

CSCS

Customization mechanisms for generic interfaces

When writing generic algorithms and libraries

information needs to be transferred from the user to library (author)

compile time:

(syntactical) correctness

check type requirements (function signature, type introspection, concept)

compute associated types (traits, decltype)

run time:

object properties (domain specific)

customization

user must be able to easily customize the default

1

Customization mechanism: interface wish list

What we would like to have: customization of interfaces (functions) which

are non-intrusive

are explicitly opt-in

prevent incorrect opt-in (error when wrong signature)

are able to provide default implementations

are simple to correctly invoke customized version when default exist

are hard to incorrectly invoke the default when customized exist

are clear in their intent when looking at the code (what and how to customize if at all)

are easy to verify for a given type

1. https://brevzin.github.io/c++/2020/12/01/tag-invoke/

2

Dynamic Polymorphism

traditional way of defining interface in OOP

works by using virtual functions in c++

Example:

struct base {
 virtual void foo(int) = 0;
};

struct derived : base {
 virtual void foo(int) override;
};

can have default implementation or not (pure virtual
function)

override keyword makes sure that we actually
customize the interface
(use -Wsuggest-override)

3

How are we doing?

virtual function

non-intrusive no inheritance from base

explicitly opt-in yes have to inherit

prevents incorrect opt-in yes with override

provides default implementations yes non-pure base class

simple to invoke yes just call from pointer-to-base

hard to incorrectly invoke yes just call from pointer-to-base

code shows intent yes virtual functions show customization

easy to verify for a given type yes when derived* is convertible to base*

Issues

intrusive!

otherwise fine?

4

Other issues

virtual function overhead

usually requires heap allocation

what if return type of interface is dependent on type?

struct array_like {
 virtual unsigned long size() const = 0;
 virtual bool operator==(array_like const&) const = 0;
 virtual auto operator[](unsigned long) -> ????;
}; what about this?

5

array_like is parametrized interface

template<typename T>
struct array_like {
 virtual unsigned long size() const = 0;
 virtual bool operator==(array_like const&) const = 0;
 virtual T& operator[](unsigned long) = 0;
};

inherit from array_like<T> ?

struct my_complex_array : array_like<std::complex> {
 virtual unsigned long size() const override;
 virtual bool operator==(array_like const&) const override;
 virtual std::complex& operator[](unsigned long) override;
}

virtual call overheads persist

introduced many interfaces:
array_like<std::complex> , array_like<double> etc

6

Static Polymorphism: Class Template Specialization

no additional runtime overhead, usually doesn't require allocation

// A formatter for objects of type T.
template <typename T,
 typename Char = char,
 typename Enable = void>
struct formatter {
 // A deleted default constructor indicates
 // a disabled formatter.
 formatter() = delete;
};

formatter class definition for fmt::format : pretty
empty

from documentation: needs parse and format
function

7

class template
specialization

non-intrusive yes can specialize any class

explicitly opt-in yes works only through specialization

prevents incorrect opt-in partially may still compile, but may not work correctly (concept could help)

provides default
implementations

no not possible (need to specialize whole class)

simple to invoke yes just call from formatter<T>::format

hard to incorrectly invoke no formatter<U>::format may just work

code shows intent no
class template and Enable is a hint that it needs to be specialized
(concept could help)

easy to verify for a given
type

no can check whether specialization exists (concept could help)

8

Static Polymorphism: Customization Points

familiar from standard library functions such as std::swap

no additional runtime overhead, usually doesn't require allocation

work through ADL: argument-dependent (name) lookup

need specific incantation:

using namespace std;
swap(a, b);

make standard namespace available
unqualified call to swap (note: not std::swap(a, b))

make interface available through (hidden) friend
member funcion (technical reason: reduce set of
functions that can be found by ADL)

struct x {
 int data;

 friend void swap(x& a, x& b) {
 b.data = std::exchange(a.data, b.data);
 }
};

std::swap can also handle types without explicit
swap interface

move constructible, move assignable

is a default implementation

9

customization points

non-intrusive yes can overload swap for any type

explicitly opt-in no opt-in is implicit

prevents incorrect opt-in partially
may still compile, but may not work correctly (concept could
help)

provides default
implementations

yes std::swap(...) works for many types out of the box

simple to invoke kinda need to remember to make namespace available

hard to incorrectly invoke no use std::swap(...) by mistake, ADL woes

code shows intent no std::swap is just a function template in the standard library

easy to verify for a given type no only with separate concept

10

Intermezzo: What is ADL again?

You don’t have to qualify the namespace for functions if one or more argument types are defined in the
namespace of the function.
-- Nicolai Josuttis, The C++ Standard Library: A Tutorial and Reference

was introduced to solve a specific problem with operators

namespace n {
 struct A {
 A operator++();
 };
 std::ostream& operator<<(std::ostream&, A const&);
}

n::A a; // create object from namespace n
a++; // this is ok -> call member function on a
std::cout << a; // how to find the right function (operator)?

solution: whenever we see an unqualified call to a possibly overloaded operator look all the namespaces
associated with the types of the arguments to the operator

here: global namespace , namespace std and namespace n

11

ADL was extended to non-operator functions such
as swap and get_next

reasoning x.foo() should be expressable as
foo(x) instead of X::foo(x)

when does ADL apply?

name lookup (building a candidate set) for an
unqualified function call (no :: -qualification)

when does ADL not apply?

not a function call: (foo)(x)

callee is not a function

lookup rules

looks only at the types of the arguments (after
resolving type aliases)

template arguments are ignored (do not add
namespace of template argument types)

all arguments are considered in no particular order

produces zero or more associated types and
associated namespaces, via a complicated ad-
hoc process

for associated types: consider only the
(namespace-scope) friends

namespace N {
 struct A {
 enum E { E0 };
 friend void f(E);
 static void g(E);
 };
}

namespace M {
 void f(int);
 void g(int);
 void test() {
 N::A::E e;
 f(e); // ADL considers N::f (friend of N::A)
 g(e); // ADL does not consider N::A::g
 }
}

12

algorithm for lookup:

create sets of associated namespaces and associated types for each argument

merge them all together (and add our current namespace and all its parents)

find declarations of the name foo in any of these namespaces

do overload resolution for this call

When does ADL go wrong?

// print library
namespace lib1 {
 template <typename T>
 void print(T x) {
 std::cout << x << std::endl;
 }

 template <typename T>
 void print_n(T x, unsigned n) {
 for (unsigned i = 0; i < n; ++i)
 print(x);
 }
}

// other library
namespace lib2 {
 struct unicorn { /* unicorn stuff goes here */ };

 std::ostream& operator<<(std::ostream& os, unicorn x) { return os; }

 // Don't ever call this! It just crashes! I don't know why I wrote it!
 void print(unicorn) { *(int*)0 = 42; }
}

int main() {
 lib2::unicorn x;
 lib1::print_n(x, 10); // boom
}

form point of view of lib1 : we have no way of
knowing what function will be called by print_n a
priori

1. https://stackoverflow.com/questions/2958648/what-are-the-pitfalls-of-adl 13

Static Polymorphism: Customization Point Objects (CPOs)

idea: separate

the piece that the user needs to specialize (found by ADL) and

the piece that the user needs to invoke (must not specialize, ADL turned off)

consider this helper function:

namespace std2 {
 template<class A, class B>
 requires /* swappable constraints */
 void swap2(A& a, B& b) {
 using std::swap;
 swap(a, b);
 }
}

what would we gain?

using namespace std2;
swap2(a, b);

ADL may break this code!

14

switch off ADL by using objects (remember ADL does not apply for non-functions)

namespace std2 {
 namespace hidden {

 // "poison pill" to hide overloads of swap() that might be found in parent namespace
 // we want to limit to only finding overloads by ADL.
 void swap() = delete;

 // define function object with operator() that forwards to call to unqualified 'swap()'
 struct swap_helper {
 template<class A, class B>
 requires /* swappable constraints */
 void operator()(A& a, B& b) const {
 using std::swap;
 swap(a, b);
 }
 };
 }

 // use inline namespace to avoid potential conflicts with hidden friend functions
 // which add functions with name 'swap' into enclosing namespace
 inline namespace swap_cpo {
 inline constexpr hidden::swap_helper swap;
 }
}

struct x {
 int data;
 friend void swap(x& a, x& b) {
 b.data = std::exchange(a.data, b.data);
 }
};

now both ways work

using namespace std2;
swap(a, b);

std2::swap(a, b);

important gain: we can now check constraints on types (concept checking)
15

customization points objects

non-intrusive yes can overload swap for any type

explicitly opt-in no opt-in is implicit

prevents incorrect opt-in partially library author can write checks (failure is earlier)

provides default implementations yes swap_helper is a default implementation

simple to invoke yes both qualified and unqualified calls work

hard to incorrectly invoke yes qualified call works equally well

code shows intent no hard to see from objects

easy to verify for a given type partially with separate concept

other issues

ususally requires more code

customization point objects reserve their identifier globally (two libraries with same CPO name may clash)

16

Static Polymorphism: tag_invoke

Solve shortcommings of CPOs

do not claim identifier name globally (which is needed for ADL)

handle (type-erased) wrapper types transparently

idea: use one CPO called tag_invoke which takes an arbitrary CPO as argument

implementation

namespace hidden {
 struct tag_invoke_fn {
 template<typename CPO, typename... Args>
 constexpr auto operator()(CPO cpo, Args&&... args) const /* noexcept clause */
 -> decltype(tag_invoke((CPO &&) cpo, (Args &&) args...)) {
 return tag_invoke((CPO &&) cpo, (Args &&) args...);
 }
 };
}
inline constexpr hidden::tag_invoke_fn tag_invoke{};

// some more helper traits and values:
template <auto& CPO>
using tag_t = ...;

template <typename CPO, typename... Args>
using tag_invoke_result_t = ...;

template <typename CPO, typename... Args>
inline constexpr bool is_tag_invocable_v = ...;

use

namespace std2 {
 // simplified way to write CPO
 inline constexpr struct swap_fn {
 template<typename A, typename B>
 requires /* swappable constraints */
 auto operator()(A& a, B& b) const /* noexcept clause */
 -> decltype(tag_invoke(*this, a, b)) { // trailing return type SFINAE
 return tag_invoke(*this, a, b);
 }
 } swap{};
}

struct x {
 int data;
 friend void tag_invoke(tag_t<std2::swap>, x& a, x& b) {
 b.data = std::exchange(a.data, b.data);
 }
};

17

both ways work

using namespace std2;
swap(a, b);

std2::swap(a, b);

globally reserve a single name: tag_invoke

18

tag_invoke

non-intrusive yes can overload tag_invoke for any type

explicitly opt-in yes opt-in is explicit

prevents incorrect opt-in partially library author can write checks (failure is earlier)

provides default implementations yes by adding overload for operator() in our CPO

simple to invoke yes qualified call

hard to incorrectly invoke yes qualified call

code shows intent partially recognize tag_invoke friend function

easy to verify for a given type partially with separate concept

other issues

ususally requires similar amount of code than CPOs

not yet standard (tag_invoke requires some machinery behind the scenes)

19

Conclusions

many nuances to consider

ADL can lead to subtle errors

lack of language feature requires elaborate library (workarounds)

tag_invoke is best option for now

if we care about a few free functions

if we need to create a whole type for an interface

other options (inherit mixins with CRTP, class template specializations etc)

20

References

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1895r0.pdf

https://brevzin.github.io/c++/2020/12/19/cpo-niebloid/

https://brevzin.github.io/c++/2020/12/01/tag-invoke/

https://quuxplusone.github.io/blog/2019/08/02/the-tough-guide-to-cpp-acronyms/#cpo

https://quuxplusone.github.io/blog/2019/04/26/what-is-adl/

https://www.fi.muni.cz/pv264/files/pv264_s06b_niebloids.pdf

21

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1895r0.pdf
https://brevzin.github.io/c++/2020/12/19/cpo-niebloid/
https://brevzin.github.io/c++/2020/12/01/tag-invoke/
https://quuxplusone.github.io/blog/2019/08/02/the-tough-guide-to-cpp-acronyms/#cpo
https://quuxplusone.github.io/blog/2019/04/26/what-is-adl/
https://www.fi.muni.cz/pv264/files/pv264_s06b_niebloids.pdf

