
Advanced C++ course 2023
Concept based design by example

CSCS (designed by Anton Afanasyev)

Motivation

(from "Design of Concept Libraries for C++" by Andrew Sutton, Bjarne Stroustrup)

(Eric Niebler on X, Jan 8th 2020)

Writing generic libraries requires discipline!

Concepts (requirements on template arguments) are the central feature of C++ generic library design;
they define the terms in which a library’s generic data structures and algorithms are specified. Every
working generic library is based on concepts. These concepts may be represented using specifically
designed language features, in requirements tables, as comments in the code, in design documents, or
simply in the heads of programmers. However, without concepts (formal or informal), no generic code
could work.

“

“
Generic Programming doesn't mean templates. It means generalizing algorithm implementations
iteratively, discovering sets of requirements on their arguments and grouping the requirements into
named concepts and hierarchies of concepts. It's about algorithms, not templates.

“

“

1

Warm-up

template<class T>
T square(T v) {
 return v*v;
}

template<std::floating_point T>
T square(T v) {
 return v*v;
}

template<HasMultiplyOp T>
T square(T v) {
 return v*v;
}

2

Example Concept for today

struct some_cursor {
 int const& get() const;
 bool done() const;
 void next();
};

We will develop a library around that concept: start

3

https://godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(filename:'1',fontScale:14,fontUsePx:'0',j:1,lang:c%2B%2B,selection:(endColumn:3,endLineNumber:9,positionColumn:3,positionLineNumber:9,selectionStartColumn:3,selectionStartLineNumber:9,startColumn:3,startLineNumber:9),source:'%23include+%3Cconcepts%3E%0A%23include+%3Ciostream%3E%0A%23include+%3Ctype_traits%3E%0A%0Astruct+some_cursor+%7B%0A++++int+const%26+get()+const%3B%0A++++bool+done()+const%3B%0A++++void+next()%3B%0A%7D%3B%0A%0Aint+main()+%7B%0A++++std::cout+%3C%3C+%22Hello+Cursor!!%22+%3C%3C+std::endl%3B%0A%7D%0A'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:49.852045256745,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:executor,i:(argsPanelShown:'1',compilationPanelShown:'0',compiler:g132,compilerName:'',compilerOutShown:'0',execArgs:'',execStdin:'',fontScale:14,fontUsePx:'0',j:1,lang:c%2B%2B,libs:!(),options:'-std%3Dc%2B%2B20+-Wpedantic+-fsanitize%3Daddress,undefined',overrides:!(),source:1,stdinPanelShown:'1',wrap:'1'),l:'5',n:'0',o:'Executor+x86-64+gcc+13.2+(C%2B%2B,+Editor+%231)',t:'0')),k:50.147954743255,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4

Exercises

starting point for exercises https://godbolt.org/z/9x75P78bo

4

https://godbolt.org/z/9x75P78bo

Summary: Cursor Concept

struct some_cursor {
 int const& get() const;
 bool done() const;
 void next();
};

template <class T> concept Cursor =
 std::move_constructible<T> && requires(T& cursor, T const& const_cursor) {
 cursor.next();
 { const_cursor.done() } -> std::convertible_to<bool>;
 const_cursor.get();
 };

static_assert(Cursor<some_cursor>);

5

Summary: Cursor Algorithms

template <std::integral T>
struct numbers_from {
 T value_;
 T const& get() const { return value_; }
 void next() { ++value_; }
 bool done() const { return false; }
};

struct take_impl{/* ... */};
constexpr inline auto take = [](int n) {
 return [n](Cursor auto cur) { return take_impl(std::move(cur), n); };
};

dump(take(2)(numbers_from(42)))

6

Summary: Improving Syntax: Composition and Pipe

namespace pipes {
 template <class F, class G>
 constexpr auto operator|(F&& f, G&& g) -> decltype(auto) {
 if constexpr (std::is_invocable_v<G&&, F&&>) {
 return g(f);
 }
 else {
 return [g = std::forward<G>(g), f = std::forward<F>(f)](auto&&... args) {
 return g(f(std::forward<decltype(args)...>(args...)));
 };
 }
 }
}; // namespace pipes

7

Summary: Customization Points

namespace cursor {
// default done
auto cursor_done(...) { return false; }

// cursor fallback
auto cursor_done(auto const& cur) -> decltype(cur.done()) { return cur.done(); }
auto cursor_next(auto& cur) -> decltype(cur.next()) { cur.next(); }
auto cursor_get(auto const& cur) -> decltype(cur.get()) { return cur.get(); }

// customization point
constexpr inline auto done = [](auto const& cur) -> decltype(cursor_done(cur)) { return cursor_done(cur); };
constexpr inline auto next = [](auto& cur) -> decltype(cursor_next(cur)) { cursor_next(cur); };
constexpr inline auto get = [](auto const& cur) -> decltype(cursor_get(cur)) { return cursor_get(cur); };
}

8

Summary: Type Erasure
template <class T> class any_cursor {
 struct iface {
 virtual ~iface(){};
 virtual T get() const = 0;
 virtual bool done() const = 0;
 virtual void next() = 0;
 };

 template <Cursor C> struct impl : iface {
 C cur_;
 impl(C cur) : cur_(std::move(cur)) {}
 T get() const { return cursor::get(cur_); }
 bool done() const { return cursor::done(cur_); }
 void next() { cursor::next(cur_); }
 };
 std::unique_ptr<iface> impl_;

public:
 template <class C> any_cursor(C cur) : impl_{ new impl<C>(std::move(cur)) } {}
 friend auto cursor_done(any_cursor const& cur) -> decltype(auto) { return cur.impl_->done(); }
 friend auto cursor_next(any_cursor& cur) -> decltype(auto) { cur.impl_->next(); }
 friend auto cursor_get(any_cursor const& cur) -> decltype(auto) { return cur.impl_->get(); }
};

9

Summary: range-based for loop
struct sentinel {};

template <Cursor C>
struct iter {
 C& cur_;

 decltype(auto) operator*() const {
 return cursor::get(cur_);
 }
 void operator++() {
 cursor::next(cur_);
 }
 bool operator!=(sentinel) const {
 return !cursor::done(cur_);
 }
};

template <Cursor C>
iter<C> begin(C& cur) { return { cur }; }
template <Cursor C>
sentinel end(C const& cur) { return {}; }

10

