+&@_ CSCS S
\' ' Centro Svizzero di Calcolo Scientifico E'" Z U r I Ch

\' Swiss National Supercomputing Centre

Data oriented design

Peter Kardos

Why care about memory layout?

Processor

Memory

GFLOPS Bandwidth

Ratio

1998

Intel P2 Xeon 400

1x 400 MHz

DDR-200

0.2

1.6 GBps

0.125 FLOPS/Bps

2022

AMD Ryzen 9 7950X

16x 5.0 GHz

DDR5-5200

1280

41.6 GBps

30.77 FLOPS/Bps

In the past 25 years:

e Compute performance grew ~6000x

e Memory bandwidth only grew ~30x

Consequence:

e Applications can easily get memory bound

e Performant applications must use memory efficiently

e Efficient memory use requires careful design

&% cscs

S 4

ETH:zurich

What is data-oriented design (DoD)?

e Think about your program as a graph of transforms
e Each transform takes some data as input and produces some other data

e Lay out your data in memory such that it's efficient to do the transforms

N-body simulation

o] New positions
X Pairwise forces reduce Forces
M Roceleratons

¥% cscs 2 ETHzirich

Comparison to OOP

Object oriented approach Data oriented approach
e |'ll make an n-body simulation e |'ll make an n-body simulation
e Let's have a Body class e | et's have a function that calculates the pairwise
e Let's add a method to calculate gravitational force gravitational forces
towards another Body e |et's figure out the input and output to this
e Let's create a Simulation class to encapsulate all function
the bodies o Let's lay out the inputs and outputs nicely in
memory
% cscs 3 ETHziirich

S 4

Theory: memory hierarchy of modern systems

Technology Latency Bandwidth Price
Registers SRAM < 1 cycle - $$%
|1 cache SRAM 4 cycles 1TB/s $%%
| 2 cache SRAM 16 cycles 1TB/s $$%
3 cache SRAM 160 cycles 400 GB/s | $%$%
DDR5 SDRAM | DRAM 320 cycles 40 GB/s $$
SSD NAND flash | > 4000 cycles | 7 GB/s $

e Many levels of storage until data reaches the CPU

e Want to keep "hot" data in fast storage

e Want to exploit strengths of storage technology

30
\\0‘0 CSCS

ETH:zurich

Theory: operation of DRAM

e The organization and operation of DDR SDRAM is quite complex, we'll have a simplified view
e Reading procedure:
1. Select the address you want to read
2. Wait until the DRAM serves you the data - this can take a while
3. Read out requested data (32, 64 or 128 bits at once)
4. Read the next address:
» Reading from nearby locations is quick
= |f reading from elsewhere you have to wait again until you get the data
e Burst mode:
o You would normally get 64 bits of data
o The DRAM can give you 8 consecutive blocks of 64 bits too
o You don't need to wait between the 8 data packets, they come quickly after each other (in a burst)
o That makes chunks of 8x 64 bits == 64 bytes being read at once

e Pretty much the same goes for writes

\?\o:-o CSCS 5 ETHziirich

Lesson #1: buy one, get 64 (1)

How to use DRAM poorly:

e Let's take a huge array of int64 s and sum every 8th element
e This uses the first 8 bytes of a 64 byte burst

int64_t sum_every_8th(std::span<int64_t> values) {
inté4_t sum = O;
for (size_t idx = @; idx < (values.size() & ~7u); idx += 8) {
// Pick first element out of a block of 8.
sum += values[idx + 0];

}

return sum;

-

——

¥% cscs 5

ETH:zurich

Lesson #1: buy one, get 64 (2)

How to use DRAM well:

o Let's take a huge array of int64 s and sum all elements
e This uses all 64 bytes of a 64 byte burst

int64_t sum_all(std::span<int64_t> values) {
inté4_t sum = O;
for (size_t idx = @; idx < (values.size() & ~7u); idx += 8) {
// Pairwise sum of all elements in a block of 8.
sum += ((values[idx + 0] + values[idx + 1]) + (values[idx + 2] + values[idx + 3]))

}

return sum;

+ ((values[idx + 4] + values[idx + 5]) + (values[idx + 6] + values[idx + 71]));

)

ETH:zurich

Lesson #1: buy one, get 64 (3)

Question: how does the execution time of the two algorithms compare? You can assume they both get the
same input.

e (a) Every 8th element faster
e (b) Equal

e (c) All elements faster

Make your bets!

\:o:o CSCS g ETHziirich

Lesson #1: buy one, get 64 (4)

Results on my system:

sum all: 1130 ms, 37.9886 GiB/s
sum every 8th: 937 ms, 5.72767 GiB/s

The theoretical maximum bandwidth of my computer is 53.6 GiB/s, so the benchmark was really (mostly)
memory bound.

Answer: they run in (essentially) equal time. We've requested 8 bytes, but we got 64 for free. The
arithmetic we did on the free bytes was mostly hidden.

Takeaway: look at your calculation (transform), group together all data it uses, put data it doesn't use
elsewhere. You can't read a single byte from DRAM, you always read at least 64 bytes!

Note: the tests eliminate the effect of CPU caching and prefetching as much as possible.

\go CSCS o ETHziirich

Lesson #2: reads vs. block size (1)

Test method:

e Allocate a huge chunk of memory

e Split it into blocks of equal size

e Read bursts from each block, then change the block

o We canread a block from start to end, linearly

o We can randomly permute the accesses [start, end)

e No address is read twice all throughout -- we measure pure DRAM, not cache

e Explicitly prefetch addresses (explained later) -- we measure DRAM, not HW prefetcher

N

8 9 10 11

30
\\0‘0 CSCS

N

1 2 3

N

4 5 6 7

10

ETH:zurich

Lesson #2: reads vs. block size (2)

o o
Sequential access Randomized access
16 -
40 -
15 -
35 -
—_ — 14 -
& 30 1 B
o o
= = 13
g :
© ©
c cC
@ D 12
20 -
11 1
15 -
10 A
10 A
R NI R) S \p@b‘@@ @q@%@m 6'5%?;’1,’\6266”56 R N R LI \/&b‘@g@ D‘qu%\/gmx@%zﬁbz%&b
Block size (*64 bytes) Block size (*64 bytes)
<& .
#® @ CSCS 11 ETH:-urich

S 4

Lesson #2: reads vs. block size (3)

e Sequential access is much faster (40 GB/s) than randomized access (16 GB/s)
e Sequential access:
o The larger the block size, the better the bandwidth
e Randomized access:
o Small and large block sizes are equally slow, the sweet spot is at 25664 bytes

o Explanation: DRAM is organized in rows and columns, and while changing a column is cheap, changing a
row is expensive. The sweet spot corresponds to the fewest row changes, which likely explains the
performance increase there.

Question: if column changes should have a very small cost, why does randomized access not peak at 40 GB/s?
The answer is left as an exercise to the reader.

Takeaway: randomized access to the DRAM appears to be 3-4 times slower than sequential access, make
sure to access memory in regular patterns and large contiguous blocks.

Note: the tests eliminate the effect of CPU caching and prefetching as much as possible.

\?\o:-o CSCS 19 ETHziirich

Theory: CPU cache hierarchy

Modern CPUs typically emply 3 levels of caching:

Typical size Count Description
Registers | 64 bit Many per core | The CPU can readily do arithmetic & logic only on registers.
L1 cache | ~64 kB 1 per core Small, ultra-fast memory, each CPU core has a dedicated instance.
L2 cache | ~1 MB 1 per core Very fast memory, each CPU core has a dedicated instance.
L3 cache | ~32 MB 1 per package | Fast memory, this one is shared accross all CPU cores.
DRAM 32 GB 1-4 channels

\:o:o CSCS 13 ETHziirich

Theory: cached memory reads

Goal: bring 1 byte from DRAM into a register

Procedure:

1. Chec
2. Chec
3. Chec
4. Get c

5.Insert d

6. Insert c

/. Insert c
8. Write c

K if C

K if C

K if d

atainto
atainto

atainto

ataisin
ataisin

ataisin

| 1 cache

| 2 cache

| 3 cache

ata from DRAM
| 3 cache (+ address & metadata)

| 2 cache

| 1 cache

ata into register

Making space : old data will be removed from the
cache so that new can be inserted

&% cscs

S 4

Cache hit:

e |f the datais found in any of the L1-L3 caches, we
nave a cache hit

e |n that case, datais retrieved from there and
written into the register, and the procedure
terminates

Cache miss:

e |f datais NOT found in the L? cache, we talk about
an L? cache miss

e [n that case, the procedure continues by checking
the next cache level

14 ETH:zurich

Theory: cached memory writes

Goal: move 1 byte from register to DRAM
Procedure:

1. Read data from register

2. Insert datainto L1 cache

30
\\0‘0 CSCS

When is data actually written into DRAM?

e Each piece of data written to L1 like this is flagged
as updated

e When spacein L1 is reclaimed, updated data gets
written back to L2

e When space in L2 is reclaimed, the data again gets
written back to L3 and then finally the DRAM

15 ETH:zurich

Theory: cache entries

Cache lines: Replacement policies:
e Data in the caches is organized into so-called e Once the cache is full, we cannot put more entries
cache lines Init
e A cachelineis typically 64 bytes (same as DRAM e We must remove some entries to free up space
e Each cache entry stores o Many strategies
° The data of the cache line o Most practical is the /east recently used (LRU)
o The memory address of the data algorithm, or some variations of it
o Information about the data (e.g. valid, updated,
etc.)
% cscs 16 ETHzirich

S 4

Theory: cache coherence

Problem: CPU #1 and #2 write, while #3 reads the same memory location simultaneously. What happens?
Solution: memory accesses are serialized internally by the CPU, regardless of the initiating core:

1. CPU #1 writes data into its own L1 cache and invalidates this address in all other caches
2. CPU #2 writes data into its own L1 cache and invalidates this address in all other caches
3. CPU #3 reads address that is cached in CPU #2's L1 cache

o As aresult data is flushed to the shared L3 cache

o CPU #3 retrieves the data from the L3 cache

Practical implementations: there are different methods to implement cache coherence in modern, multi-
core CPUs. We will not examine exact implementations, as it's not strictly necessary to understand the main

principles.

\?\o:-o CSCS 17 ETHziirich

Lesson #3: keep frequently accessed data in caches (1)

Test method:

e Allocate a memory block of certain size
o Keep reading that block repeatedly
e This should keep the block in cache if it fits

e Observe performance

\:o:o CSCS 18 ETHziirich

Lesson #3: keep frequently accessed data in caches (2)

Results: Explanation:

- S

140 4 e We see adipin performance at 512 KiB of data
o The data becomes too big to fitin L2

1201 o Must use slower L3 cache

e We see adip at 64 MiB too
o The data becomes too bigto fitinL3
o Must use slower DRAM

e What about L1 and a dip at 32 KiB?

o Maybe we are already be ALU-bound

=
o
o

(@)
o
1

Bandwidth (GB/s)

60 -

o Maybe L1 doesn't have any higher bandwidth
(may still have lower latency though!)

40 A

107 103 104 10° 106 107 108 10°
Data size (bytes)

Takeaway: If you repeatadly access the same data,
try to make sure it fits in the fastest cache available.

\go CSCS 19 ETHziirich

Lesson #4: false sharing is not caring (1)

e Remember cache lines?

o All the physical memory is split into cache lines

o You cannot pull just part of a cache line into the caches

e What if two CPU cores read-modify-write the same cache line?

o The writes normally go into each CPUs local L1 cache

O

O

Coherence: concurrent reads force the written data to be flushed into L3

False sharing: The CPUs don't have to write the exact same address, it's enough if the addresses share a

cache line.

Example: You have an std::array<int, 2> a;,one CPU coreis updating a[@] while the other is

updating a[1] . Since the two elements (almost always) share a cache line, this results in false sharing.

Note: the CPUs don't actually share any data, this is why it's called false sharing.

\3.0 CSCS 20

S 4

ETH:zurich

Lesson #4: false sharing is not caring (2)

So how bad is false sharing?
Test method:

e Take a large array of numbers

e Splititinto batches

e Sum each batch in a new thread
e Sum the partial results

e False sharing: put each thread's accumulator in the same cache line!

\?\o}o CSCS 21 ETHziirich

Lesson #4: false sharing is not caring (3)

Results:
Number of Time Time false
threads clean sharing
1 297 ms 300 ms
2 177 ms 1563 ms
3 158 ms 1721 ms
4 161 ms 6322 ms
5 157 ms 8295 ms
6 158 ms 3374 ms
7/ 157 ms 4810 ms
3 158 ms 6082 ms
% cscs

S 4

Explanation:

e One thread cannot have false sharing, times are
virtually the same

e Clean: no speedup beyond 2 CPU cores, at that
point it's already memory bound

e False sharing: performance severly impacted by all
the synchronization between CPU cores

Note: this is a made-up example for demonstration
purposes. False sharing most often occurs with
lockless data structures relying on atomics.

Takeaway: make sure not to put independent
resources that are written by multiple threads into
the same cache line. Performance can be affected
drastically.

ETH:zurich

Theory: the prefetcher (1)

Imagine the scenario: What if instead we had this:
e Application: CPU, give me a[4] and b[4]! e Application: CPU, give me a[4] and b[4] !
e CPU: Okay, please wait 50 ns, DRAM is slow e CPU: Okay, please wait 50 ns, DRAM is slow
e Application: ... e (CPU: I bet he'sgonnaget a[5] and b[5] next,
e CPU: Hereis a[4] and b[4] better request it now.)
e Application: CPU, add a[4] and b[4] ! * Application: ...
e CPU: Hereis a[4] + b[4] e CPU: Hereis a[4] and b[4]
e Application: CPU, give me a[5] and b[5] ! * Application: CPU, add a[4] and b[4] !
e CPU: Okay, please wait 50 ns, DRAM is slow * CPU: Herels a[4] + b[4]
o e Application: CPU, give me a[5] and b[5] !
e CPU: | expected you to want it, hereis a[4] +
b[4]
% cscs 23 ETHzirich

S 4

Theory: the prefetcher (2)

e |n fact, this is how modern CPUs actually work

e They try to predict memory access patterns and move data to cache even before it's requested

Without prefetching:

A
Request a[4] Request a[3] |
Supply a[4] Supply a[3]
Memory Y Y
controller

With prefetching:

CPU —
A A
Request a[4] Request a[5] Request a[6]
Supply a[4] Supply a[5]
4 4 4
Memory
controller
#% cscs 24 ETHzirich

S 4

Lesson #5: make use of the prefetcher (1)

You cando it in two ways:

1. Access memory in predictable patterns
o Sequential access is always a good idea
o Otherwise, measure

2. Issue explicit PREFETCHTO or similar instructions
o Not super portable

o Be careful not to make things worse

\:o:o CSCS ot ETHziirich

Lesson #5: make use of the prefetcher (2)

e Remember our reads within differently sized blocks test?

e | used PREFETCHTO all throughout, what if we remove it?

Sequential access

40 4

W
Ul

W
o
1

Bandwidth (GB/s)
N N
(@] (O]

=
Ul
1

10 A

X @ A0 S b ;@ o X D a0
Y LI RN RN O %@’L\/@%@ﬂb e

Data size (bytes)

26

Bandwidth (GB/s)

16 -

14 ~

=
N
1

o
1

Randomized access

3 5 3 :
v ® A0 PPt S b qubq&g@\/@%,bﬁbZ@@’b

Data size (bytes)

ch

Lesson #5: make use of the prefetcher (3)

Results:

e Performance somewhat affected for sequential reads

o The CPU's hardware prefetcher does a good job

o My manual prefetch probably has a longer look-ahead
e Performance drastically affected for random reads

o The CPU's hardware prefetcher is basically useless here

Takeaway:
Play your data into the hands of the hardware prefetcher. If you can't, consider using manual prefetching.

\?\o}o CSCS 7 ETHziirich

Practical memory handling in C++ (1)

Overalighed memory

Alignment: memory address of a variable must be a multiple of X bytes.
Why? How?

e SIMD types: alighed load and store may be faster e alignof keyword: like sizeof, but gives you the

e Align to cache lines: to avoid false sharing alignment

e GPU memory: may help texture units or texture * alignas keyword: specified the alignment of a

cache type/object
e std::aligned_alloc : like malloc, but with specific
alignment
e operator new / operator delete :can now handle
overaligned types
<& .y
&# @ CSCS 28 ETH:zurich

S 4

Practical memory handling in C++ (2)

Overaligned memory: example

Consider a vector class suitable for SSE:

struct Vec4 {
alignas(16) float elements[4];

Yo

Now you may safely use aligned loads and stores:

Vecd4 v; // Our custom vector type
const auto regT _mm_load_ps(v.elements); // aligned, always fast
const auto reg2 _mm_loadu_ps(v.elements); // unaligned, may be slower

Dynammically allocating vec4 s also respects the alignment specification:

auto* const vectors = new Vector[1337];
delete[] vectors;

\3\0:0 CSCS 26 ETHziirich

Practical memory handling in C++ (3)

Cache lines

e The size of cache lines may be different on different hardware
e Luckily, C++ has:

© std::hardware_destructive_interference : minimum offset between two objects to avoid false sharing"
(from cppreference)

o0 std::hardware_constructive_interference : "maximum size of contiguous memory to promote true
sharing" (from cppreference)

e Unfortunately...
o They are not supported in libstdc++

o You have to #ifdef them to a fallback value in reality

\go CSCS 30 ETHziirich

Remarks

e There have been announcments that OOP is dead...

e Data oriented design is just another tool
Can | still use OOP?

e Yes, and you should

e |t's very intuitive and often help with clean code
When to use DoD?

e When it improves your performance

e Sometimes it even makes your code cleaner!

Are DoD and OOP exclusive?

e No, you can mix them as you see fit

Performance and readability are two different goals, and often one is traded for the other.

\?\o}o CSCS 31 ETHziirich

References

e https://www.techpowerup.com/cpu-specs/pentium-ii-xeon-400.c2962

e https://www.amd.com/en/product/12151
e https://en.wikipedia.org/wiki/DDR SDRAM
e https://en.wikipedia.org/wiki/DDR5 SDRAM

e https://www.agner.org/optimize/instruction tables.pdf

e https://www.intel.com/content/www/us/en/developer/articles/technical/memory-performance-in-a-
nutshell.html

e https://compas.cs.stonybrook.edu/~nhonarmand/courses/sp15/cse502/res/dramop.pdf

e https://en.cppreference.com/w/

\:o} CSCS 39 ETHziirich

https://www.techpowerup.com/cpu-specs/pentium-ii-xeon-400.c2962
https://www.amd.com/en/product/12151
https://en.wikipedia.org/wiki/DDR_SDRAM
https://en.wikipedia.org/wiki/DDR5_SDRAM
https://www.agner.org/optimize/instruction_tables.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-performance-in-a-nutshell.html
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-performance-in-a-nutshell.html
https://compas.cs.stonybrook.edu/~nhonarmand/courses/sp15/cse502/res/dramop.pdf
https://en.cppreference.com/w/

Resources

Get the slides and full source code on GitHub:

https://github.com/eth-cscs/cpp-course-2023

¥% cscs 33 ETHzirich

https://github.com/eth-cscs/cpp-course-2023

