
Data oriented design
Peter Kardos

Why care about memory layout?

Year Processor Cores Memory GFLOPS Bandwidth Ratio

1998 Intel P2 Xeon 400 1x 400 MHz DDR-200 0.2 1.6 GBps 0.125 FLOPS/Bps

2022 AMD Ryzen 9 7950X 16x 5.0 GHz DDR5-5200 1280 41.6 GBps 30.77 FLOPS/Bps

In the past 25 years:

Compute performance grew ~6000x

Memory bandwidth only grew ~30x

Consequence:

Applications can easily get memory bound

Performant applications must use memory efficiently

Efficient memory use requires careful design

1

What is data-oriented design (DoD)?

Think about your program as a graph of transforms

Each transform takes some data as input and produces some other data

Lay out your data in memory such that it's efficient to do the transforms

N-body simulation

Positions

Masses

x Pairwise forces Forcesreduce

Accelerations/

∫ New positions

2

Comparison to OOP

Object oriented approach

I'll make an n-body simulation

Let's have a Body class

Let's add a method to calculate gravitational force
towards another Body

Let's create a Simulation class to encapsulate all
the bodies

Data oriented approach

I'll make an n-body simulation

Let's have a function that calculates the pairwise
gravitational forces

Let's figure out the input and output to this
function

Let's lay out the inputs and outputs nicely in
memory

3

Theory: memory hierarchy of modern systems

Memory Technology Latency Bandwidth Price

Registers SRAM < 1 cycle - $$$

L1 cache SRAM 4 cycles 1 TB/s $$$

L2 cache SRAM 16 cycles 1 TB/s $$$

L3 cache SRAM 160 cycles 400 GB/s $$$

DDR5 SDRAM DRAM 320 cycles 40 GB/s $$

SSD NAND flash > 4000 cycles 7 GB/s $

Many levels of storage until data reaches the CPU

Want to keep "hot" data in fast storage

Want to exploit strengths of storage technology

4

Theory: operation of DRAM

The organization and operation of DDR SDRAM is quite complex, we'll have a simplified view

Reading procedure:

1. Select the address you want to read

2. Wait until the DRAM serves you the data - this can take a while

3. Read out requested data (32, 64 or 128 bits at once)

4. Read the next address:

Reading from nearby locations is quick

If reading from elsewhere you have to wait again until you get the data

Burst mode:

You would normally get 64 bits of data

The DRAM can give you 8 consecutive blocks of 64 bits too

You don't need to wait between the 8 data packets, they come quickly after each other (in a burst)

That makes chunks of 8x 64 bits == 64 bytes being read at once

Pretty much the same goes for writes

5

Lesson #1: buy one, get 64 (1)

How to use DRAM poorly:

Let's take a huge array of int64 s and sum every 8th element

This uses the first 8 bytes of a 64 byte burst

int64_t sum_every_8th(std::span<int64_t> values) {
 int64_t sum = 0;
 for (size_t idx = 0; idx < (values.size() & ~7u); idx += 8) {
 // Pick first element out of a block of 8.
 sum += values[idx + 0];
 }
 return sum;
}

6

Lesson #1: buy one, get 64 (2)

How to use DRAM well:

Let's take a huge array of int64 s and sum all elements

This uses all 64 bytes of a 64 byte burst

int64_t sum_all(std::span<int64_t> values) {
 int64_t sum = 0;
 for (size_t idx = 0; idx < (values.size() & ~7u); idx += 8) {
 // Pairwise sum of all elements in a block of 8.
 sum += ((values[idx + 0] + values[idx + 1]) + (values[idx + 2] + values[idx + 3]))
 + ((values[idx + 4] + values[idx + 5]) + (values[idx + 6] + values[idx + 7]));
 }
 return sum;
}

7

Lesson #1: buy one, get 64 (3)

Question: how does the execution time of the two algorithms compare? You can assume they both get the
same input.

(a) Every 8th element faster

(b) Equal

(c) All elements faster

Make your bets!

8

Lesson #1: buy one, get 64 (4)

Results on my system:

sum all: 1130 ms, 37.9886 GiB/s
sum every 8th: 937 ms, 5.72767 GiB/s

The theoretical maximum bandwidth of my computer is 53.6 GiB/s, so the benchmark was really (mostly)
memory bound.

Answer: they run in (essentially) equal time. We've requested 8 bytes, but we got 64 for free. The
arithmetic we did on the free bytes was mostly hidden.

Takeaway: look at your calculation (transform), group together all data it uses, put data it doesn't use
elsewhere. You can't read a single byte from DRAM, you always read at least 64 bytes!

Note: the tests eliminate the effect of CPU caching and prefetching as much as possible.

9

Lesson #2: reads vs. block size (1)

Test method:

Allocate a huge chunk of memory

Split it into blocks of equal size

Read bursts from each block, then change the block

We can read a block from start to end, linearly

We can randomly permute the accesses [start, end)

No address is read twice all throughout -- we measure pure DRAM, not cache

Explicitly prefetch addresses (explained later) -- we measure DRAM, not HW prefetcher

11 0 1 2 3 4 5 6 78 9 10

10

Lesson #2: reads vs. block size (2)

Sequential access Randomized access

11

Lesson #2: reads vs. block size (3)

Sequential access is much faster (40 GB/s) than randomized access (16 GB/s)

Sequential access:

The larger the block size, the better the bandwidth

Randomized access:

Small and large block sizes are equally slow, the sweet spot is at 256*64 bytes

Explanation: DRAM is organized in rows and columns, and while changing a column is cheap, changing a
row is expensive. The sweet spot corresponds to the fewest row changes, which likely explains the
performance increase there.

Question: if column changes should have a very small cost, why does randomized access not peak at 40 GB/s?
The answer is left as an exercise to the reader.

Takeaway: randomized access to the DRAM appears to be 3-4 times slower than sequential access, make
sure to access memory in regular patterns and large contiguous blocks.

Note: the tests eliminate the effect of CPU caching and prefetching as much as possible.

12

Theory: CPU cache hierarchy

Modern CPUs typically emply 3 levels of caching:

Memory Typical size Count Description

Registers 64 bit Many per core The CPU can readily do arithmetic & logic only on registers.

L1 cache ~64 kB 1 per core Small, ultra-fast memory, each CPU core has a dedicated instance.

L2 cache ~1 MB 1 per core Very fast memory, each CPU core has a dedicated instance.

L3 cache ~32 MB 1 per package Fast memory, this one is shared accross all CPU cores.

DRAM 32 GB 1-4 channels

13

Theory: cached memory reads

Goal: bring 1 byte from DRAM into a register

Procedure:

1. Check if data is in L1 cache

2. Check if data is in L2 cache

3. Check if data is in L3 cache

4. Get data from DRAM

5. Insert data into L3 cache (+ address & metadata)

6. Insert data into L2 cache

7. Insert data into L1 cache

8. Write data into register

Making space : old data will be removed from the
cache so that new can be inserted

Cache hit:

If the data is found in any of the L1-L3 caches, we
have a cache hit

In that case, data is retrieved from there and
written into the register, and the procedure
terminates

Cache miss:

If data is NOT found in the L? cache, we talk about
an L? cache miss

In that case, the procedure continues by checking
the next cache level

14

Theory: cached memory writes

Goal: move 1 byte from register to DRAM

Procedure:

1. Read data from register

2. Insert data into L1 cache

When is data actually written into DRAM?

Each piece of data written to L1 like this is flagged
as updated

When space in L1 is reclaimed, updated data gets
written back to L2

When space in L2 is reclaimed, the data again gets
written back to L3 and then finally the DRAM

15

Theory: cache entries

Cache lines:

Data in the caches is organized into so-called
cache lines

A cache line is typically 64 bytes (same as DRAM
burst length, but could be different)

Each cache entry stores

The data of the cache line

The memory address of the data

Information about the data (e.g. valid, updated,
etc.)

Replacement policies:

Once the cache is full, we cannot put more entries
in it

We must remove some entries to free up space

Which entry should we remove?

Many strategies

Most practical is the least recently used (LRU)
algorithm, or some variations of it

16

Theory: cache coherence

Problem: CPU #1 and #2 write, while #3 reads the same memory location simultaneously. What happens?

Solution: memory accesses are serialized internally by the CPU, regardless of the initiating core:

1. CPU #1 writes data into its own L1 cache and invalidates this address in all other caches

2. CPU #2 writes data into its own L1 cache and invalidates this address in all other caches

3. CPU #3 reads address that is cached in CPU #2's L1 cache

As a result data is flushed to the shared L3 cache

CPU #3 retrieves the data from the L3 cache

Practical implementations: there are different methods to implement cache coherence in modern, multi-
core CPUs. We will not examine exact implementations, as it's not strictly necessary to understand the main
principles.

17

Lesson #3: keep frequently accessed data in caches (1)

Test method:

Allocate a memory block of certain size

Keep reading that block repeatedly

This should keep the block in cache if it fits

Observe performance

18

Lesson #3: keep frequently accessed data in caches (2)

Results: Explanation:

We see a dip in performance at 512 KiB of data

The data becomes too big to fit in L2

Must use slower L3 cache

We see a dip at 64 MiB too

The data becomes too big to fit in L3

Must use slower DRAM

What about L1 and a dip at 32 KiB?

Maybe we are already be ALU-bound

Maybe L1 doesn't have any higher bandwidth
(may still have lower latency though!)

Takeaway: If you repeatadly access the same data,
try to make sure it fits in the fastest cache available.

19

Lesson #4: false sharing is not caring (1)

Remember cache lines?

All the physical memory is split into cache lines

You cannot pull just part of a cache line into the caches

What if two CPU cores read-modify-write the same cache line?

The writes normally go into each CPUs local L1 cache

Coherence: concurrent reads force the written data to be flushed into L3

False sharing: The CPUs don't have to write the exact same address, it's enough if the addresses share a
cache line.

Example: You have an std::array<int, 2> a; , one CPU core is updating a[0] while the other is
updating a[1] . Since the two elements (almost always) share a cache line, this results in false sharing.

Note: the CPUs don't actually share any data, this is why it's called false sharing.

20

Lesson #4: false sharing is not caring (2)

So how bad is false sharing?

Test method:

Take a large array of numbers

Split it into batches

Sum each batch in a new thread

Sum the partial results

False sharing: put each thread's accumulator in the same cache line!

21

Lesson #4: false sharing is not caring (3)

Results:

Number of
threads

Time
clean

Time false
sharing

1 297 ms 300 ms

2 177 ms 1563 ms

3 158 ms 1721 ms

4 161 ms 6322 ms

5 157 ms 8295 ms

6 158 ms 3374 ms

7 157 ms 4810 ms

8 158 ms 6082 ms

Explanation:

One thread cannot have false sharing, times are
virtually the same

Clean: no speedup beyond 2 CPU cores, at that
point it's already memory bound

False sharing: performance severly impacted by all
the synchronization between CPU cores

Note: this is a made-up example for demonstration
purposes. False sharing most often occurs with
lockless data structures relying on atomics.

Takeaway: make sure not to put independent
resources that are written by multiple threads into
the same cache line. Performance can be affected
drastically.

22

Theory: the prefetcher (1)

Imagine the scenario:

Application: CPU, give me a[4] and b[4] !

CPU: Okay, please wait 50 ns, DRAM is slow

Application: ...

CPU: Here is a[4] and b[4]

Application: CPU, add a[4] and b[4] !

CPU: Here is a[4] + b[4]

Application: CPU, give me a[5] and b[5] !

CPU: Okay, please wait 50 ns, DRAM is slow

...

What if instead we had this:

Application: CPU, give me a[4] and b[4] !

CPU: Okay, please wait 50 ns, DRAM is slow

(CPU: I bet he's gonna get a[5] and b[5] next,
better request it now.)

Application: ...

CPU: Here is a[4] and b[4]

Application: CPU, add a[4] and b[4] !

CPU: Here is a[4] + b[4]

Application: CPU, give me a[5] and b[5] !

CPU: I expected you to want it, here is a[4] +
b[4]

...

23

Theory: the prefetcher (2)

In fact, this is how modern CPUs actually work

They try to predict memory access patterns and move data to cache even before it's requested

Without prefetching:

CPU

Memory
controller

Request a[4]

...

Supply a[4]

Request a[5]

......

...

Supply a[5]

With prefetching:

CPU

Memory
controller

Request a[4]

...

Supply a[4]

Request a[5]

......

...

Supply a[5]

...

...

Request a[6]

24

Lesson #5: make use of the prefetcher (1)

You can do it in two ways:

1. Access memory in predictable patterns

Sequential access is always a good idea

Otherwise, measure

2. Issue explicit PREFETCHT0 or similar instructions

Not super portable

Be careful not to make things worse

25

Lesson #5: make use of the prefetcher (2)

Remember our reads within differently sized blocks test?

I used PREFETCHT0 all throughout, what if we remove it?

Sequential access Randomized access

26

Lesson #5: make use of the prefetcher (3)

Results:

Performance somewhat affected for sequential reads

The CPU's hardware prefetcher does a good job

My manual prefetch probably has a longer look-ahead

Performance drastically affected for random reads

The CPU's hardware prefetcher is basically useless here

Takeaway:
Play your data into the hands of the hardware prefetcher. If you can't, consider using manual prefetching.

27

Practical memory handling in C++ (1)

Overaligned memory

Alignment: memory address of a variable must be a multiple of X bytes.

Why?

SIMD types: aligned load and store may be faster

Align to cache lines: to avoid false sharing

GPU memory: may help texture units or texture
cache

How?

alignof keyword: like sizeof , but gives you the
alignment

alignas keyword: specified the alignment of a
type/object

std::aligned_alloc : like malloc , but with specific
alignment

operator new / operator delete : can now handle
overaligned types

28

Practical memory handling in C++ (2)

Overaligned memory: example

Consider a vector class suitable for SSE:

struct Vec4 {
 alignas(16) float elements[4];
};;

Now you may safely use aligned loads and stores:

Vec4 v; // Our custom vector type
const auto reg1 = _mm_load_ps(v.elements); // aligned, always fast
const auto reg2 = _mm_loadu_ps(v.elements); // unaligned, may be slower

Dynammically allocating Vec4 s also respects the alignment specification:

auto* const vectors = new Vector[1337];
delete[] vectors;

29

Practical memory handling in C++ (3)

Cache lines

The size of cache lines may be different on different hardware

Luckily, C++ has:

std::hardware_destructive_interference : minimum offset between two objects to avoid false sharing"
(from cppreference)

std::hardware_constructive_interference : "maximum size of contiguous memory to promote true
sharing" (from cppreference)

Unfortunately...

They are not supported in libstdc++

You have to #ifdef them to a fallback value in reality

30

Remarks

There have been announcments that OOP is dead...

Data oriented design is just another tool

Can I still use OOP?

Yes, and you should

It's very intuitive and often help with clean code

When to use DoD?

When it improves your performance

Sometimes it even makes your code cleaner!

Are DoD and OOP exclusive?

No, you can mix them as you see fit

Performance and readability are two different goals, and often one is traded for the other.

31

References

https://www.techpowerup.com/cpu-specs/pentium-ii-xeon-400.c2962

https://www.amd.com/en/product/12151

https://en.wikipedia.org/wiki/DDR_SDRAM

https://en.wikipedia.org/wiki/DDR5_SDRAM

https://www.agner.org/optimize/instruction_tables.pdf

https://www.intel.com/content/www/us/en/developer/articles/technical/memory-performance-in-a-
nutshell.html

https://compas.cs.stonybrook.edu/~nhonarmand/courses/sp15/cse502/res/dramop.pdf

https://en.cppreference.com/w/

32

https://www.techpowerup.com/cpu-specs/pentium-ii-xeon-400.c2962
https://www.amd.com/en/product/12151
https://en.wikipedia.org/wiki/DDR_SDRAM
https://en.wikipedia.org/wiki/DDR5_SDRAM
https://www.agner.org/optimize/instruction_tables.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-performance-in-a-nutshell.html
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-performance-in-a-nutshell.html
https://compas.cs.stonybrook.edu/~nhonarmand/courses/sp15/cse502/res/dramop.pdf
https://en.cppreference.com/w/

Resources

Get the slides and full source code on GitHub:

https://github.com/eth-cscs/cpp-course-2023

33

https://github.com/eth-cscs/cpp-course-2023

