+&@_ CSCS S
\' ' Centro Svizzero di Calcolo Scientifico E'H Z U r I Ch

\' Swiss National Supercomputing Centre

Containers, algorithms, ranges

Péter Kardos

Standard containers

e Examples: std::vector, std::map,or std::list
e C++ standard library: generic implementation of common data structures
e Philosophy:

o The standard specifies the properties of containers

= Example: search in O(log(n))

o The standard implementation can choose any data structure for the container
o As long as it satisfies said properties
= Example: std::map may be ared-black tree or an AVL tree
e Practical use:
o The standard library covers most cases => Don't implement data structures yourself

o The standard library aims to be good enough most often => You may be faster in special cases

= Example: Google's dense hash vs sparse hash vs std::unordered_map

\:o:o CSCS 1 ETHziirich

Containers in the standard library

Sequences:

® std::array

e std::vector

e std::deque

 std::forward_list

® std::list

Associative:

o std::set

e std::map

® std::multiset

® std::multimap
@% cscs

S 4

Unordered associative:

e std::
® std::
® std::

® std::

unordered_set
unordered_map
unordered_multiset

unordered_multimap

Container adaptors:

® std::
® std::

® std::

Views:

® std:

® std::

stack
gqueue

priority_queue

:span

mdspan

ETH:zurich

Lesson #1: always use containers (1)

Problem:

e Create an array of increasing numbers.

Bad solution:

int* const numbers = new int[500];
for (int 1 = 0; i < 100; ++i) {
numbers[i] = 1i;

}

This code has bugs. Can you tell me what?

\:o} CSCS 3 ETHziirich

Lesson #1: always use containers (2)

Another solution:

const int count = 500;
const std::unique_ptr<int[]> numbers(new int[count]);
for (int 1 = @; 1 < count; ++i) {

numbers[i] = 1i;

}

Breakdown:

e No more leaks

e No more underflow/overflow

e Complicated syntax

e Cannot resize array

\3\0:0 CSCS 4 ETHziirich

Lesson #1: always use containers (3)

Proper solution:

std::vector<int> numbers(5600);
for (int 1 = 0; 1 < numbers.size(); ++i) {
numbers[i] = 1i;

}

Why use containers:

e They don't leak memory

e Easy access to data (e.g. operator[])

e Easy modification of data (e.g. resize())

e |[mproved exception safety (strong exception safety)

e Meaningful and consistent syntax

\:o} CSCS 5 ETHziirich

Iterators: basic usage

Let's have a std::vector of numbers:

std::vector<int> numbers(5600);

lterating over the elements by indexing:

for (int i = @; 1 < numbers.size(); ++i) {
numbers[i] *= 2;

}

lterating over the elements by iterators:

for (auto it = numbers.begin(); it != numbers.end(); ++it) {
kit *= 2;

}

\3\0:0 cscs 4 ETHziirich

Iterators: definition

e Arange is a generalized memory block
o |t has a beginning

o It has an end

o |t contains a sequence of objects (<-> sequence of bytes)
e An iteratoris a generalized pointer

o Points to an object within a range (<-> pointer)

o You can dereference it to get the object (operator*)

o You can get the iterator to the next object in the range (operator++)
e Uniform interface across containers & algorithms:

o Each container is a range

o Delimited by the begin() and end() iterators

o Same syntax for iterating over a container

\:o:o CSCS y ETHziirich

Iterators vs. pointers

Performance:

e |terators often compile to the same machine code as pointers

e /erooverhead in most cases

Safety:

e Checked iterators
o Enabled in debug builds on some compilers

o Assertion error on out of range accesses

o Assertion error on misuse (e.g. mixing iterators of different instances)

Abstraction:

e Not restricted to linear memory (e.g. can iterate over trees, lists)

\?\o}o CSCS g ETHziirich

Memory allocation

Several options:

e malloc & free
e operator new & operator delete
e Custom allocators: Hoard, tcmalloc, jemalloc

e Implementing your own
Question:

e Which one does std::vector::resize() use to allocate memory?

\3\010 CSCS o ETHziirich

Standard allocators

e A template parameter control memory allocation of containers

e Example: the declaration of the std::vector class:

template<

class T,

class Allocator = std::allocator<T>
> class vector;

e Note the template parameter Allocator

e By default, std::allocator<T> is used

e That uses operator new/operator delete under the hood
e You can also write your own allocator

o You can make it use Hoard or tcmalloc

\:0:0 CSCS 10 ETHziirich

Polymorphic memory resources (PMR) (1)

Problem with allocators:

void my_fun(const std::vector<int, my_allocator<int>>& values);

std: :vector<int> values;
my_fun(values); // Does not work

o |'ve forced all users of my_fun to use my_allocator too

o Even if they hate it

\:o} CSCS 11 ETHziirich

Polymorphic memory resources (PMR) (2)

Solution:

void my_fun(const std::vector<int, std::pmr::polymorphic_allocator<int>>& values);

std::vector<int, std::pmr::polymorphic_allocator<int>> values(
std: :pmr::polymorphic_allocator{their_resource}
5

my_fun(values); // Work fine, uses caller's memory allocator

e Use polymorphic_allocator everywhere
e The polymorphic_allocator delegates actual allocation to a memory_resource
® memory_resource IS a base class->youcanimplement it differently

e Callers of my_fun can now make my_fun use their allocators

1¥,® CSCs 12 ETHzurich

Polymorphic memory resources (PMR) (3)

e Memory resource:
o Realized by the base class std: :pmr: :memory_resource
o Implemented by derived classes:
= synchronized_pool_resource (thread-safe pool)

= unsynchronized_pool_resource (single-threaded pool)

= monotonic_buffer_resource (stack allocator)
e Polymorphic allocator:
o Realized by the class std: :pmr::polymorphic_allocator
o You can supply a std::memory_resource at construction
e Containers using polymorphic allocator by default:
O std::pmr::vector<T>, std::pmr::map<K, V>, etc.

o You can supply a polymorphic_allocator at construction

\:0:0 CSCS 13 ETHziirich

Allocators vs polymorphic memory resources

When to use PMR?
e Prefer PMR over traditional allocator templates -> cleaner code
Overhead of PMR?

e PMR uses virtual function calls to allocate memory
e Usual allocators may be fully inlined

e This overhead is typically negligible
Special cases: HPC, embedded:

e Don't stop using containers
e You can use PMR to customize their memory behavior to suit your needs

o At least in most cases

e Use non-owning containers like std::span and std::string_view

\:o:o CSCS 14 ETHziirich

Standard algorithms

e Example: std::sort, std::find, std::binary_search
e The standard library has generic implementations of many common algorithms
e The algorithms work on ranges specified by iterators:

o You can use your container's begin() and end() to supply the range

o Algorithms thus run on any suitable container
e Practical use:

o Many real-world problems can be reduced to a common algorithm

= Example: compare two containers with std::inner_product
o This helps you avoid reinventing the wheel
o You can expect the standard algorithms to have very few bugs

= Unlike your 2-minute attempts at these algorithms

\:o:o CSCS 15 ETHziirich

Algorithms in the standard library

e There are two many to fit on a slide...
e They are organized into two headers
e <algorithm>: general algorithms, like sorting, enumerating, etc.

o Full list: https://en.cppreference.com/w/cpp/algorithm

e <numeric>: numerical algorithms, like reduce, inner product, etc.

o Full list: https://en.cppreference.com/w/cpp/numeric

e Look them up on the internet

\?\o:-o CSCS 16 ETHziirich

https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/numeric

Lesson #2: reduce your problems to STL algorithms (1)

Problem: insert an element into a sorted vector. Vector must stay sorted.

void InsertSorted(std::vector<int>& range, int item) {

}

\:o} CSCS 17 ETHziirich

Lesson #2: reduce your problems to STL algorithms (2)

Solution: use binary search.

void InsertSorted(std::vector<int>& range, int item) {
size_t a 0;
size_t b range.size();
size_t c (a +b) / 2;
do {
if (item < range[c]) {
b = c;
}
else {
a = c;
h
c =(a+b)/ 2;
} while (a !'= ¢);
range.insert(range.begin() + c, item);

e | haven't actually tested this code

e |'m quite confident it does not work

e Looks complicated

¥% cscs 18

ETH:zurich

Lesson #2: reduce your problems to STL algorithms (3)

Attempt one: use std::sort

void InsertSorted(std::vector<int>& range, int item) {
range.push_back(item);
std::sort(range.begin(), range.end());

e This solution very likely actually works
e |It's very inefficient though

o Sorting the whole vector is a waste

\:o} CSCS 19 ETHziirich

Lesson #2: reduce your problems to STL algorithms (4)

Attempt one: use std: :upper_bound

void InsertSorted(std::vector<int>& range, int item) {
const auto location = std::upper_bound(range.begin(), range.end(), item);
range.insert(location, item);

e This solution fairly likely works
o Though std::lower_bound and std::upper_bound are not trivial
e |t's as efficient as the hand-coded

e But much simpler

\3\0:0 CSCS 20 ETHziirich

Lesson #3: don't abuse your problems into STL algorithms

A simple for loop over a range:

for (auto& item : range) {
item *= 2;

}

The same code using std::for_each:

std: :for_each(range.begin(), range.end(), [](auto& item)({
item *= 2;

})

e The STL algorithm is actually less readable here
e But you could also use parallel for_each

e Do what's best for your codebase

\3\0:0 CSCS 21 ETHziirich

Range: definition

Ranges are now formalized as a C++20 concept:

template< class T >

concept range = requires(T& t) {
ranges: :begin(t);
ranges::end (t);

}s

In plain text, an object is a range if you can:

e call ranges::begin on it
e call ranges::end on it.
e The containers mentioned before are ranges

e Some container adaptors are not

\:0:0 CSCS 9 ETHziirich

Algorithms on ranges

The syntax for algorithms is quite verbose:

std::sort(numbers.begin(), numbers.end());

Ranges simplify the syntax:

std::ranges::sort(numbers);

e A lot of algorithms have a ranges version
e They operate on ranges, not pairs of iterators

e Since containers are ranges, they work directly on entire containers

\3\0:0 CSCS 93 ETHziirich

Views (range adaptors)

Let's take a list of numbers:

std::vector<int> numbers = {...};

Let's try to double each number using algorithms:

const auto doubleFunc = [](auto v) { return 2 * v; };

std::vector<int> doubledData = {...};
std::ranges::transform(numbers, std::back_inserter(doubledData), doubleFunc);

L et's do the same using views:

const auto doubledView = std::views::transform(numbers, doubleFunc);

e Algorithms are eager: they process every single element in the range immediately

e Views are lazy: they process an element only when you dereference the iterator to it

1¥,® CSCs 24 ETHzurich

Example: lazy evaluation (1)

Let's use the same function object to double numbers:

const auto transformFunc = [](auto v) {
std::cout << "(processing " << v << ")";
return 2 * v;

This time it also prints when it's being called.

\:0:0 CSCS ot ETHziirich

Example: lazy evaluation (2)

Using the traditional transform algorithm:

Using the new transform view:

std: :vector<int> doubled;
std::ranges::transform(
numbers,
std::back_inserter(doubled),
transformFunc) ;

for (auto v : doubled) {
std::cout << v << " ";

}

Output:

(processing 1) (processing 2) (processing 3) 2 4 6

Analysis: first, all items are processed when calling
transform, then all are printed.

N A g CSCS

26

const auto doubled = std::views::transform(
numbers,

transformFunc) ;

for (auto v : doubled) {
std::cout << v << " ";

}

Output:

(processing 1) 2 (processing 2) 4 (processing 3) 6

Analysis: none of the items are processed when
creating the view. They are evaluated lazily as we
dereference the iterator.

ETH:zurich

Example: composition of views

e iota gives us an infinite range of numbers 1, 2, 3, ...
e transform can be used to modify each element in the sequence

o First they are squared

o Then we take the reciprocal
e take takes the first one million elements from this infinite range

const auto series =
std::views::iota(1LL)
| std::views::transform([](auto v) { return v * v; })
| std::views::transform([](auto v) { return 1.0 / v; })

| std::views::take(1'000'000);

Questions:

e What concept does series satisfy?
e What are the first 3 elements of series ?
e Bonus: what do you get if you sum the elements of series?

¥% cscs 57

ETH:zurich

Remarks

e The C++ standard library is focused on data structures and algorithms
e Both data structures and algorithms are generic and composable
e Many real-world problems can be modeled in terms of these data structures and algorithms
e Use the standard library as much as you can

o Saves you development time

o Improves code quality (e.g. fewer bugs, fewer lines)

o May improve performance: std::stable_sort likely outperforms your half_assed_sort ™
e Expect to outperform the standard library for specific cases

o But only after a lot of investment from you

\:o:o CSCS)8 ETHziirich

References

e https://en.cppreference.com/w/cpp/container

e https://en.cppreference.com/w/cpp/algorithm

e https://en.cppreference.com/w/cpp/numeric

<& .
1¥,® CSCs 29 ETH:zurich

https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/numeric

Resources

Get the slides and full source code on GitHub:

https://github.com/eth-cscs/cpp-course-2023

¥% cscs 30 ETHzirich

https://github.com/eth-cscs/cpp-course-2023

