
Containers, algorithms, ranges
Péter Kardos

Standard containers

Examples: std::vector , std::map , or std::list

C++ standard library: generic implementation of common data structures

Philosophy:

The standard specifies the properties of containers

Example: search in O(log(n))

The standard implementation can choose any data structure for the container

As long as it satisfies said properties

Example: std::map may be a red-black tree or an AVL tree

Practical use:

The standard library covers most cases => Don't implement data structures yourself

The standard library aims to be good enough most often => You may be faster in special cases

Example: Google's dense hash vs sparse hash vs std::unordered_map

1

Containers in the standard library

Sequences:

std::array

std::vector

std::deque

std::forward_list

std::list

Associative:

std::set

std::map

std::multiset

std::multimap

Unordered associative:

std::unordered_set

std::unordered_map

std::unordered_multiset

std::unordered_multimap

Container adaptors:

std::stack

std::queue

std::priority_queue

Views:

std::span

std::mdspan

2

Lesson #1: always use containers (1)

Problem:

Create an array of increasing numbers.

Bad solution:

int* const numbers = new int[500];
for (int i = 0; i < 100; ++i) {
 numbers[i] = i;
}

This code has bugs. Can you tell me what?

3

Lesson #1: always use containers (2)

Another solution:

const int count = 500;
const std::unique_ptr<int[]> numbers(new int[count]);
for (int i = 0; i < count; ++i) {
 numbers[i] = i;
}

Breakdown:

No more leaks

No more underflow/overflow

Complicated syntax

Cannot resize array

4

Lesson #1: always use containers (3)

Proper solution:

std::vector<int> numbers(500);
for (int i = 0; i < numbers.size(); ++i) {
 numbers[i] = i;
}

Why use containers:

They don't leak memory

Easy access to data (e.g. operator[])

Easy modification of data (e.g. resize())

Improved exception safety (strong exception safety)

Meaningful and consistent syntax

5

Iterators: basic usage

Let's have a std::vector of numbers:

std::vector<int> numbers(500);

Iterating over the elements by indexing:

for (int i = 0; i < numbers.size(); ++i) {
 numbers[i] *= 2;
}

Iterating over the elements by iterators:

for (auto it = numbers.begin(); it != numbers.end(); ++it) {
 *it *= 2;
}

6

Iterators: definition

A range is a generalized memory block

It has a beginning

It has an end

It contains a sequence of objects (<-> sequence of bytes)

An iterator is a generalized pointer

Points to an object within a range (<-> pointer)

You can dereference it to get the object (operator*)

You can get the iterator to the next object in the range (operator++)

Uniform interface across containers & algorithms:

Each container is a range

Delimited by the begin() and end() iterators

Same syntax for iterating over a container

7

Iterators vs. pointers

Performance:

Iterators often compile to the same machine code as pointers

Zero overhead in most cases

Safety:

Checked iterators

Enabled in debug builds on some compilers

Assertion error on out of range accesses

Assertion error on misuse (e.g. mixing iterators of different instances)

Abstraction:

Not restricted to linear memory (e.g. can iterate over trees, lists)

8

Memory allocation

Several options:

malloc & free

operator new & operator delete

Custom allocators: Hoard, tcmalloc, jemalloc

Implementing your own

Question:

Which one does std::vector::resize() use to allocate memory?

9

Standard allocators

A template parameter control memory allocation of containers

Example: the declaration of the std::vector class:

template<
 class T,
 class Allocator = std::allocator<T>
> class vector;

Note the template parameter Allocator

By default, std::allocator<T> is used

That uses operator new/operator delete under the hood

You can also write your own allocator

You can make it use Hoard or tcmalloc

10

Polymorphic memory resources (PMR) (1)

Problem with allocators:

void my_fun(const std::vector<int, my_allocator<int>>& values);
...
std::vector<int> values;
my_fun(values); // Does not work

I've forced all users of my_fun to use my_allocator too

Even if they hate it

11

Polymorphic memory resources (PMR) (2)

Solution:

void my_fun(const std::vector<int, std::pmr::polymorphic_allocator<int>>& values);
...
std::vector<int, std::pmr::polymorphic_allocator<int>> values(
 std::pmr::polymorphic_allocator{their_resource}
);
my_fun(values); // Work fine, uses caller's memory allocator

Use polymorphic_allocator everywhere

The polymorphic_allocator delegates actual allocation to a memory_resource

memory_resource is a base class -> you can implement it differently

Callers of my_fun can now make my_fun use their allocators

12

Polymorphic memory resources (PMR) (3)

Memory resource:

Realized by the base class std::pmr::memory_resource

Implemented by derived classes:

synchronized_pool_resource (thread-safe pool)

unsynchronized_pool_resource (single-threaded pool)

monotonic_buffer_resource (stack allocator)

Polymorphic allocator:

Realized by the class std::pmr::polymorphic_allocator

You can supply a std::memory_resource at construction

Containers using polymorphic allocator by default:

std::pmr::vector<T> , std::pmr::map<K, V> , etc.

You can supply a polymorphic_allocator at construction

13

Allocators vs polymorphic memory resources

When to use PMR?

Prefer PMR over traditional allocator templates -> cleaner code

Overhead of PMR?

PMR uses virtual function calls to allocate memory

Usual allocators may be fully inlined

This overhead is typically negligible

Special cases: HPC, embedded:

Don't stop using containers

You can use PMR to customize their memory behavior to suit your needs

At least in most cases

Use non-owning containers like std::span and std::string_view

14

Standard algorithms

Example: std::sort , std::find , std::binary_search

The standard library has generic implementations of many common algorithms

The algorithms work on ranges specified by iterators:

You can use your container's begin() and end() to supply the range

Algorithms thus run on any suitable container

Practical use:

Many real-world problems can be reduced to a common algorithm

Example: compare two containers with std::inner_product

This helps you avoid reinventing the wheel

You can expect the standard algorithms to have very few bugs

Unlike your 2-minute attempts at these algorithms

15

Algorithms in the standard library

There are two many to fit on a slide...

They are organized into two headers

<algorithm> : general algorithms, like sorting, enumerating, etc.

Full list: https://en.cppreference.com/w/cpp/algorithm

<numeric> : numerical algorithms, like reduce, inner product, etc.

Full list: https://en.cppreference.com/w/cpp/numeric

Look them up on the internet

16

https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/numeric

Lesson #2: reduce your problems to STL algorithms (1)

Problem: insert an element into a sorted vector. Vector must stay sorted.

void InsertSorted(std::vector<int>& range, int item) {
 ...
}

17

Lesson #2: reduce your problems to STL algorithms (2)

Solution: use binary search.

void InsertSorted(std::vector<int>& range, int item) {
 size_t a = 0;
 size_t b = range.size();
 size_t c = (a + b) / 2;
 do {
 if (item < range[c]) {
 b = c;
 }
 else {
 a = c;
 }
 c = (a + b) / 2;
 } while (a != c);
 range.insert(range.begin() + c, item);
}

I haven't actually tested this code

I'm quite confident it does not work

Looks complicated

18

Lesson #2: reduce your problems to STL algorithms (3)

Attempt one: use std::sort

void InsertSorted(std::vector<int>& range, int item) {
 range.push_back(item);
 std::sort(range.begin(), range.end());
}

This solution very likely actually works

It's very inefficient though

Sorting the whole vector is a waste

19

Lesson #2: reduce your problems to STL algorithms (4)

Attempt one: use std::upper_bound

void InsertSorted(std::vector<int>& range, int item) {
 const auto location = std::upper_bound(range.begin(), range.end(), item);
 range.insert(location, item);
}

This solution fairly likely works

Though std::lower_bound and std::upper_bound are not trivial

It's as efficient as the hand-coded

But much simpler

20

Lesson #3: don't abuse your problems into STL algorithms

A simple for loop over a range:

for (auto& item : range) {
 item *= 2;
}

The same code using std::for_each :

std::for_each(range.begin(), range.end(), [](auto& item){
 item *= 2;
})

The STL algorithm is actually less readable here

But you could also use parallel for_each

Do what's best for your codebase

21

Range: definition

Ranges are now formalized as a C++20 concept:

template< class T >
concept range = requires(T& t) {
 ranges::begin(t);
 ranges::end (t);
};

In plain text, an object is a range if you can:

call ranges::begin on it

call ranges::end on it.

The containers mentioned before are ranges

Some container adaptors are not

22

Algorithms on ranges

The syntax for algorithms is quite verbose:

std::sort(numbers.begin(), numbers.end());

Ranges simplify the syntax:

std::ranges::sort(numbers);

A lot of algorithms have a ranges version

They operate on ranges, not pairs of iterators

Since containers are ranges, they work directly on entire containers

23

Views (range adaptors)

Let's take a list of numbers:

std::vector<int> numbers = {...};

Let's try to double each number using algorithms:

const auto doubleFunc = [](auto v) { return 2 * v; };

std::vector<int> doubledData = {...};
std::ranges::transform(numbers, std::back_inserter(doubledData), doubleFunc);

Let's do the same using views:

const auto doubledView = std::views::transform(numbers, doubleFunc);

Algorithms are eager: they process every single element in the range immediately

Views are lazy: they process an element only when you dereference the iterator to it

24

Example: lazy evaluation (1)

Let's use the same function object to double numbers:

const auto transformFunc = [](auto v) {
 std::cout << "(processing " << v << ")";
 return 2 * v;
};

This time it also prints when it's being called.

25

Example: lazy evaluation (2)

Using the traditional transform algorithm:

std::vector<int> doubled;
std::ranges::transform(
 numbers,
 std::back_inserter(doubled),
 transformFunc);

for (auto v : doubled) {
 std::cout << v << " ";
}

Output:

(processing 1) (processing 2) (processing 3) 2 4 6

Analysis: first, all items are processed when calling
transform , then all are printed.

Using the new transform view:

const auto doubled = std::views::transform(
 numbers,
 transformFunc);

for (auto v : doubled) {
 std::cout << v << " ";
}

Output:

(processing 1) 2 (processing 2) 4 (processing 3) 6

Analysis: none of the items are processed when
creating the view. They are evaluated lazily as we
dereference the iterator.

26

Example: composition of views

iota gives us an infinite range of numbers 1, 2, 3, ...

transform can be used to modify each element in the sequence

First they are squared

Then we take the reciprocal

take takes the first one million elements from this infinite range

const auto series =
 std::views::iota(1LL)
 | std::views::transform([](auto v) { return v * v; })
 | std::views::transform([](auto v) { return 1.0 / v; })
 | std::views::take(1'000'000);

Questions:

What concept does series satisfy?

What are the first 3 elements of series ?

Bonus: what do you get if you sum the elements of series ?

27

Remarks

The C++ standard library is focused on data structures and algorithms

Both data structures and algorithms are generic and composable

Many real-world problems can be modeled in terms of these data structures and algorithms

Use the standard library as much as you can

Saves you development time

Improves code quality (e.g. fewer bugs, fewer lines)

May improve performance: std::stable_sort likely outperforms your half_assed_sort ™

Expect to outperform the standard library for specific cases

But only after a lot of investment from you

28

References

https://en.cppreference.com/w/cpp/container

https://en.cppreference.com/w/cpp/algorithm

https://en.cppreference.com/w/cpp/numeric

29

https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/numeric

Resources

Get the slides and full source code on GitHub:

https://github.com/eth-cscs/cpp-course-2023

30

https://github.com/eth-cscs/cpp-course-2023

