
Advanced C++ Course
std::mdspan

CSCS

Motivation

How can we deal with multi-dimensional data with different layout: C-Layout vs Fortran-Layout

Every HPC software dealing with multi-dimensional data implements their own:

allocation of multi-dimensional data (host/device, alignment, layout)

accessing multi-dimensional data (abstract layout)

iteration/algorithms over multi-dimensional data (in HPC mostly domain specific, highly optimized)

How to interface between libraries?

Best case: well-defined/described concept that can be modelled by the other library

Worst case: concrete class

md::span is

a non-owning multi-dimensional array view

meant to be used in interfaces

1

What is std::mdspan?

std::mdspan is a non-owning multi-dimensional array view

since C++23, see https://wg21.link/p0009 and https://eel.is/c++draft/views#multidim

think of pointer and metadata (how to interpret the pointed-to memory)

template<
 class T,
 class Extents,
 class LayoutPolicy = std::layout_right,
 class AccessorPolicy = std::default_accessor<T>
> class mdspan;

TriviallyCopyable*: can be used in host/device interfaces

allows different layouts

* under some costraints

2

https://wg21.link/p0009
https://eel.is/c++draft/views#multidim

std::mdspan<...>

template<
 class T,
 class Extents,
 class LayoutPolicy = std::layout_right,
 class AccessorPolicy = std::default_accessor<T>
> class mdspan;

std::vector<float> v(100);
auto v_span = std::mdspan(v.data(), std::extents{ 10, 10 });

T is the element type (my_mdspan::element_type): float

Extents describes number of dimensions and there sizes (required to be spezialization of std::extents)

LayoutPolicy describes memory layout (my_mdspan::layout_type): default std::layout_right (C-layout)

AccessorPolicy allows customization how we access the data (my_mdspan::accessor_type):
think std::default_accessor<T> does pointer dereference of T*

v_span[2, 3] = 42.;

3

std::extents

can describe run-time and compile-time extents

compile-time extents are helpful for optimizations (explicit by library implementor or implicit by compiler)

very easy (thanks to CTAD): std::extents{ 10, 10 }

template< class IndexType, std::size_t... Extents >
class extents;

IndexType is a signed or unsigned integer type

each element of Extents is either

std::dynamic_extent or

number representable in IndexType (compile-time extents)

4

std::extents

Examples

auto ext1 = std::extents<int, std::dynamic_extent, 3, std::dynamic_extent, 4>{ 42, 43 };
static_assert(decltype(ext1)::rank() == 4);
static_assert(decltype(ext1)::rank_dynamic() == 2);
static_assert(decltype(ext1)::static_extent(0) == std::dynamic_extent);
assert(ext1.extent(0) == 42);
static_assert(decltype(ext1)::static_extent(1) == 3);

auto ext2 = std::extents<std::uint8_t, 3, 4>{};
static_assert(decltype(ext2)::static_extent(0) == 3);
static_assert(decltype(ext2)::static_extent(1) == 4);

auto ext3 = std::extents{ 42, 44 };
static_assert(decltype(ext3)::static_extent(42) == std::dynamic_extent);
assert(ext3.extent(0) == 42);

auto ext4 = std::dextents<int, 3>{ 42, 43, 44 };

5

LayoutPolicy

provided policies:

std::layout_right (default, row-major, C-
layout)

std::layout_left (column-major, Fortran-
layout)

std::layout_stride generalization for arbitrary
strides

custom layout:

skip elements (e.g. tiling)

multiple indices to the same element

https://commons.wikimedia.org/wi
ki/User:Cmglee, CC BY-SA 4.0

auto s = std::mdspan(some_ptr, std::layout_stride::mapping(std::extents(2, 5, 10), std::array{ 5, 1, 10 }));

assert((some_ptr[1*5 + 2*1 + 3*10] == s[1, 2, 3]));

6

https://commons.wikimedia.org/wiki/User:Cmglee
https://commons.wikimedia.org/wiki/User:Cmglee

Layout example: matrix vector multiply*

using layout = /* see-below */;

std::mdspan<double, std::extents<int, N, M>, layout> A = ...;
std::mdspan<double, std::extents<int, N>> y = ...;
std::mdspan<double, std::extents<int, M>> x = ...;

std::ranges::iota_view range{0, N};

std::for_each(std::execution::par_unseq,
 std::ranges::begin(range), std::ranges::end(range),
 [=](int i) {
 double sum = 0.0;
 for(int j = 0; j < M; ++j) {
 sum += A[i, j] * x[j];
 }
 y[i] = sum;
 });

on CPUs: C-layout aka row-major aka std::layout_right performs well (vectorized inner loop)

on GPUs: Fortran-layout aka column-major aka std::layout_left performs well (coalesced memory load)

* from https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0009r18.html 2.6

7

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0009r18.html

AccessorPolicy

Example

template <class ElementType>
struct default_accessor {
 using offset_policy = default_accessor;
 using element_type = ElementType;
 using reference = ElementType&;
 using data_handle_type = ElementType*;

 // some ctors

 constexpr data_handle_type offset(data_handle_type p, size_t i) const noexcept {
 return p + i;
 }

 constexpr reference access(data_handle_type p, size_t i) const noexcept {
 return p[i];
 }
};

8

Custom Accessor Example: protect host/device access

template <class ElementType, DeviceType Device>
struct host_device_protector {
 using offset_policy = host_device_protector; using element_type = ElementType;
 using reference = ElementType&; using data_handle_type = ElementType*;

 constexpr data_handle_type offset(data_handle_type p, size_t i) const noexcept { return p + i; }

 constexpr reference access(data_handle_type p, size_t i) const noexcept {
#ifdef __CUDA_ARCH__
 static_assert(Device == DeviceType::CUDA);
#else
 static_assert(Device == DeviceType::CPU);
#endif
 return p[i];
 }
};

void test_host_device_protector() {
 float* dev_ptr = allocate_some_cuda_memory<float>(4);
 auto s = std::mdspan<float, std::dextents<int, 2>, std::layout_right, host_device_protector<float, DeviceType::CPU>>{ dev_ptr, std::dextents<int, 2>{ 2, 2 } };
 std::cout << s[1, 2] << std::endl;
}

> error: static assertion failed due to requirement '(DeviceType)1 == DeviceType::CPU'

9

Status of multi-dimensional C++

 accessing multi-dimensional data (mdspan)
 allocating multi-dimensional data
 iterating multi-dimensional data / multi-dimensional algorithms (see *)

In C++26 we will get:

very likely: std::submdspan

likely: std::mdarray

* Multidimensional C++, Bryce A. Lelbach at CppNorth 2022

10

https://youtu.be/aFCLmQEkPUw?si=4LI8eo5ZvBLEjDxq

Example: mdspan from custom mdarray*

template <class T, std::size_t N>
struct my_mdarray {
 std::vector<T> data_;
 std::array<int, N> sizes_;

 my_mdarray(std::convertible_to<int> auto... sizes) : data_((sizes * ...)), sizes_{ sizes... } {
 }

 std::mdspan<T, std::dextents<int, N>> mdspan() {
 return { data_.data(), std::dextents<int, N>{ sizes_ } };
 }

 operator std::mdspan<T, std::dextents<int, N>>() {
 return { data_.data(), std::dextents<int, N>{ sizes_ } };
 }
};

* std::mdarray is proposed in https://wg21.link/p1684

11

https://wg21.link/p1684

Questions?

