+&@_ CSCS S
\' ' Centro Svizzero di Calcolo Scientifico E'" Z U r I Ch

\' Swiss National Supercomputing Centre

Advanced C++ Course

std::mdspan
CSCS

Motivation

e How can we deal with multi-dimensional data with different layout: C-Layout vs Fortran-Layout
Every HPC software dealing with multi-dimensional data implements their own:

e allocation of multi-dimensional data (host/device, alighment, layout)

e accessing multi-dimensional data (abstract layout)

e iteration/algorithms over multi-dimensional data (in HPC mostly domain specific, highly optimized)
How to interface between libraries?

o Best case: well-defined/described concept that can be modelled by the other library

e \WWorst case: concrete class
md: :span IS

e a non-owning multi-dimensional array view

e meant to be used in interfaces

\?\o}o CSCS 1 ETHziirich

What is std::mdspan?

std::mdspan is a non-owning multi-dimensional array view

e since C++23, see https://wg21.link/p0009 and https://eel.is/c++draft/views#multidim

POOOSR1E &

std: :mdspan: a non-owning multidimensional P2599R2 & 17

P2E04R0 5) 19.39+
fi rtial)*
array reference P2613R1 B {partial)
P2763R1 &

e think of pointer and metadata (how to interpret the pointed-to memory)

template<
class T,
class Extents,
class LayoutPolicy = std::layout_right,
class AccessorPolicy = std::default_accessor<T>

> class mdspan;

e TriviallyCopyable*: can be used in host/device interfaces

e allows different layouts

* under some costraints

1¥,® CSCs 2 ETHzurich

https://wg21.link/p0009
https://eel.is/c++draft/views#multidim

std::mdspan<...>

templatec<
class T,
class Extents,
class LayoutPolicy = std::layout_right,
class AccessorPolicy = std::default_accessor<T>

> class mdspan;

std::vector<float> v(160);
auto v_span = std::mdspan(v.data(), std::extents{ 16, 10 });

e T isthe element type (my_mdspan: :element_type): float
e Extents describes number of dimensions and there sizes (required to be spezialization of std::extents)

e LayoutPolicy describes memory layout (my_mdspan::layout_type): default std::layout_right (C-layout)

e AccessorPolicy allows customization how we access the data (my_mdspan: :accessor_type):
think std::default_accessor<T> does pointer dereference of T*

v_span[2, 3] = 42.;

<¥,® CSCs 3 ETHzurich

std::extents

e can describe run-time and compile-time extents
e compile-time extents are helpful for optimizations (explicit by library implementor or implicit by compiler)

e very easy (thanks to CTAD): std::extents{ 10, 10 }

template< class IndexType, std::size_t... Extents >
class extents;

e IndexType is asigned or unsigned integer type
e each element of Extents is either
© std::dynamic_extent Or

o number representable in IndexType (compile-time extents)

\3\0:0 CSCS 4 ETHziirich

std::extents

Examples

auto extl = std::extents<int,
static_assert(decltype(extl)::
static_assert(decltype(extl)::
static_assert(decltype(extl)::
assert(extl.extent(0) == 42);
static_assert(decltype(ext1):

std::dynamic_extent, 3, std::dynamic_extent, 4>{ 42, 43 };
rank() == 4);

rank_dynamic() == 2);
static_extent(0) == std::dynamic_extent);

:static_extent(1) == 3);

auto ext2 = std::extents<std:
static_assert(decltype(ext2)::

:uint8_t, 3, 4>{};

static_extent(9) == 3);

assert(ext3.extent(0) == 42);

static_assert(decltype(ext2?)::static_extent(1) == 4);
auto ext3 = std::extents{ 42, 44 },;
static_assert(decltype(ext3)::static_extent(42) == std::dynamic_extent);

auto ext4 = std::dextents<int,

3>{ 42, 43, 44 },

N R g CSCS

ETH:zurich

LayoutPolicy

Row-major order

* provided policies: - .] https://commons.wikimedia.org/wi
o std::layout_right (default, row-major, C- . | ki/User:Cmglee, CCBY-5A 4.0
layout) 5 3
o std::layout_left (column-major, Fortran- Column-major order
layout) - 7

o std::layout_stride generalization for arbitrary
strides

e custom layout:
o skip elements (e.g. tiling)

o multiple indices to the same element

auto s = std::mdspan(some_ptr, std::layout_stride::mapping(std::extents(2, 5, 10), std::array{ 5, 1, 10 }));

assert((some_ptr[1*5 + 2*1 + 3*10] == s[1, 2, 3]));

\3\0:0 CSCS 4 ETHziirich

https://commons.wikimedia.org/wiki/User:Cmglee
https://commons.wikimedia.org/wiki/User:Cmglee

Layout example: matrix vector multiply*

using layout = /#* see-below */;

std: :mdspan<double, std::extents<int, N, M>, layout> A = ...;
std: :mdspan<double, std::extents<int, N>> vy ;
std: :mdspan<double, std::extents<int, M>> x

std::ranges::iota_view range{0, N};

std::for_each(std::execution: :par_unseq,

std::ranges::begin(range), std::ranges::end(range),
[=](int 1) {

double sum = 0.0;

for(int j = 0; j < M; ++j) {

sum += A[i, j] * x[j];
}
y[i] = sum;

+)

e on CPUs: C-layout aka row-major aka std::layout_right performs well (vectorized inner loop)

e on GPUs: Fortran-layout aka column-major aka std::layout_left performs well (coalesced memory load)

* from https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0009r18.html 2.6

\3\0:0 CSCS y ETHziirich

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0009r18.html

AccessorPolicy

Example

template <class ElementType>
struct default_accessor {
using offset_policy = default_accessor;
using element_type = ElementType;
using reference = ElementType&;
using data_handle_type = ElementType¥*;

// some ctors

constexpr data_handle_type offset(data_handle_type p, size_t i) const noexcept {
return p + 1i;

}

constexpr reference access(data_handle_type p, size_t i) const noexcept {
return p[i];

}
'

1¥,® CSCs 8 ETHzurich

Custom Accessor Example: protect host/device access

template <class ElementType, DeviceType Device>

struct host_device_protector {
using offset_policy = host_device_protector; using element_type = ElementType;
using reference = ElementType&; using data_handle_type = ElementType*;

constexpr data_handle_type offset(data_handle_type p, size_t i) const noexcept { return p + i; }

constexpr reference access(data_handle_type p, size_t i) const noexcept {
#ifdef __CUDA_ARCH__

static_assert(Device == DeviceType::CUDA);
#else
static_assert(Device == DeviceType::CPU);
#endif
return p[i];
'
i

void test_host_device_protector() {
float* dev_ptr = allocate_some_cuda_memory<float>(4);

std::cout << s[1, 2] << std::endl;

auto s = std::mdspan<float, std::dextents<int, 2>, std::layout_right, host_device_protector<float, DeviceType::CPU>>{ dev_ptr, std::dextents<int, 2>{ 2, 2 } };

> error: static assertion failed due to requirement '(DeviceType)l == DeviceType: :CPU'

<¥ge cscs o

ETH:zurich

Status of multi-dimensional C++

accessing multi-dimensional data (mdspan)
X allocating multi-dimensional data
X iterating multi-dimensional data / multi-dimensional algorithms (see *)

In C++26 we will get:

e very likely: std::submdspan

o |likely: std::mdarray

* Multidimensional C++, Bryce A. Lelbach at CppNorth 2022

\?\o}o CSCS 10 ETHziirich

https://youtu.be/aFCLmQEkPUw?si=4LI8eo5ZvBLEjDxq

Example: mdspan from custom mdarray*

template <class T, std::size_t N>
struct my_mdarray {
std: :vector<T> data_;
std::array<int, N> sizes_;

my_mdarray(std::convertible_to<int> auto... sizes) : data_((sizes * ...)), sizes_{ sizes... } {

}

std: :mdspan<T, std::dextents<int, N>> mdspan() {
return { data_.data(), std::dextents<int, N>{ sizes_ } };

}

operator std::mdspan<T, std::dextents<int, N>>() {
return { data_.data(), std::dextents<int, N>{ sizes_ } };

}

s

*std::mdarray is proposed in https://wg21.link/p1684

1¥,® CSCs 11 ETHzurich

https://wg21.link/p1684

&, CSCS .
\\).. Centro Svizzero di Calcolo Scientifico E’H Z U r I C h

Swiss National Supercomputing Centre

Uﬂ’) 1 A

C@@ ﬂ)/ «J(xf /_.. ”*7\/66),,» \v %/
i

Juc'“" M& d& O

H <2
[n: :?:; r =2 mdam.randm‘f'(ﬂ,.o,o) ‘a f‘?(,ﬁ)
pm r'Well , {0} A and «£0. s formaty

Q) /a, (1200 G*ﬁ Caow‘ ’PV L - V(l’.f):
il i .

Questions?

