+&@_ CSCS S
\' ' Centro Svizzero di Calcolo Scientifico E'H Z U r I Ch

\' Swiss National Supercomputing Centre

Coroutines in a nutshell

Péter Kardos

Coroutines in C++

Split into two layers:

1. Compiler support layer
o A standardized interface to talk to the compiler
o You have to define a coroutine promise
o You have to define classes that use the promise (e.g. future, generator)

o The compiler translates co_return, co_yield and co_await statements to code that calls your defined
classes

o This is complicated, so we'll skip this

2. Library layer
o Assume someone did the complicated stuff above
o Now you have a usable coroutine library

o This is what we'll talk about

\:o:o CSCS 1 ETHziirich

Coroutine libraries

e You can not practically use the barebones coroutines in C++
e You must implement a library on top
o This means you can have different interfaces and capabilities for different coro libraries
e The catch: C++ does not have a standard one yet
o Worse: there are not many open source ones either
e We'll use a fictional library for code examples:
o |t defined task<T>

o |t also defined generator<T>

\:o:o CSCS 5 ETHziirich

What is a coroutine?

In short: a function that can be paused and resumed

later

This is the simplest coroutine:

task<int> zero(int value) {
std::cout << "Hi from coroutine!" << std::endl;

co_return 0;

You can "call" it from a function:

void function() {
task<int> tsk = zero();
std::cout << "Hi from function!" << std::endl;

int value = tsk.get();

P
\\0‘0 CSCS

What happens here:

1. zero() spawns the coroutine, but it's initially
paused

2. The code of function continues immediately,
without executing the coroutine

3. The coroutine executes somewhere else (on
another thread maybe)

4. function retrieves the result of the coroutine

o It may also blocks to wait if the result is not
ready yet

Possible output:

Hi from function!
Hi from coroutine!

ETH:zurich

Combining coroutines

Consider two coroutines:

}

task<int> produce_value() {

int value = ...; // Complex stuff
co_return value;

task<int> process_value() {

int init = ...; // Complex stuff
task<int> tsk = produce_value();
int value = co_await tsk;

int result = ...; // Complex stuff
co_return result;

&9 @® CSCS

@

What happens in process_value :

1. Does initialization
2. Spawns coroutine
3. Pauses itself

o And tell tsk it's waiting for it

Later, possibly in another thread:

1. produce_value finishes executing, passes its result

in tsk

2. tsk sees process_value is waiting for it

3. tsk resumes process_value

4. process_value retrieves the resultin tsk (

value = co_await ...)

5. process_value does its complex stuff

ETH:zurich

Coroutines as user space threads

A thread can be in these states:

e Running: a CPU core is currently walking through its instructions

e Paused: no CPU should be working on it

e Ready: a CPU core can pick it up, if it has capacity
Observe: a coroutine can be in these exact same states!
Difference:

e A CPU core switching from one thread to the other is expensive
o Must go through the operating system kernel and thread scheduler
e A CPU core switching from one coroutine to the other is cheap
o Just save the state of the current one, load the state of the next, and go
e Coroutines basically realize a cooperative thread scheduler purely in user space

o This is much lighter weight than the preemptive kernel scheduler

\?\o:-o CSCS 5 ETHziirich

Use cases for task-like coroutines

e Scaling event-driven systems: large number of small jobs, does not saturate CPU capacity
o Think of a web server
o You could launch a thread for each client
o Threads are resource heavy, this doesn't scale

o Launch a coroutine for each client instead. You can have millions of coroutines at the same time without
issue.

e Efficiently scheduling parallel work: medium number of heavy jobs, spins all cores at 100%
o Think of a game engine
o Many tasks, many of them parallel-decomposable:
= Process sound: convolution reverb, mixing...
= Update physics engine: space partitioning, detect collisions...
= Update graphics engine: occlusion culling, issue render commands...
o You can reframe the tasks as coroutines that co_await each other

o Set a thread-pool to eagerly resume 'ready' coroutines from a global queue

\?\o:-o CSCS 4 ETHziirich

Generators

Coroutines also help lazy-generating sequences:

generator<int> fibonacci() {
int a=1, b = 1;
while (true) {
co_yield a;
std::tie(a, b) = std::tuple(b, a + b);

generator<int> g = fibonacci()
auto fib_n = begin(g); // Iterator!
for (int i=0; i<100; ++i) {
std::cout << *fib_n << std::endl;
++fib_n;

N A g CSCS

® co_yield:

o Pauses the coroutine like co_await
o Creates aresult like co_return

o Not waiting for another coro, manually resumed

® generator<T>:

o It's a range: has begin() and end() methods

o These return iterators to the values in the range

o The range is made up of the values co_yield ed
e Lifecycle generators:

1. Spawn the coroutine: start in a running state

2. Hits co_yield, produces a value and pauses

3. Dereference iterator: extract the latest
co_yield 'ed value

4. Increment iterator: resume coroutine until next

co_yield

ETH:zurich

Use cases for generators

e Express procedurally generated infinite sequences (e.g. random numbers)

e |terate over data structures: may be more convenient to express it as a coroutine than directly with
iterator classes

e Awaitable generators:
o |Instead of dereferencing the iterator, you co_await it

o Your web-client's requests can be expressed as a generator

\:o:o CSCS g ETHziirich

Remarks

e This was a very brief introduction, there is a lot more to it:
o How to implement task<T> and generator<T> yourself
o How to implement a coroutine scheduler
o Theory of operation of threads
o Theory of operation of stackful and stackless coroutines
e To use coroutines in practice, you need a library that implements task<T> and generator<T>
o You can write your own
o You can use:

m cppcoro: https://github.com/lewissbaker/cppcoro

» |ibcoro: https://github.com/jbaldwin/libcoro

\?\o}o CSCS o ETHziirich

https://github.com/lewissbaker/cppcoro
https://github.com/jbaldwin/libcoro

