
Coroutines in a nutshell
Péter Kardos

Coroutines in C++

Split into two layers:

1. Compiler support layer

A standardized interface to talk to the compiler

You have to define a coroutine promise

You have to define classes that use the promise (e.g. future, generator)

The compiler translates co_return , co_yield and co_await statements to code that calls your defined
classes

This is complicated, so we'll skip this

2. Library layer

Assume someone did the complicated stuff above

Now you have a usable coroutine library

This is what we'll talk about

1

Coroutine libraries

You can not practically use the barebones coroutines in C++

You must implement a library on top

This means you can have different interfaces and capabilities for different coro libraries

The catch: C++ does not have a standard one yet

Worse: there are not many open source ones either

We'll use a fictional library for code examples:

It defined task<T>

It also defined generator<T>

2

What is a coroutine?

In short: a function that can be paused and resumed
later

This is the simplest coroutine:

task<int> zero(int value) {
 std::cout << "Hi from coroutine!" << std::endl;
 co_return 0;
}

You can "call" it from a function:

void function() {
 task<int> tsk = zero();
 std::cout << "Hi from function!" << std::endl;
 int value = tsk.get();
}

What happens here:

1. zero() spawns the coroutine, but it's initially
paused

2. The code of function continues immediately,
without executing the coroutine

3. The coroutine executes somewhere else (on
another thread maybe)

4. function retrieves the result of the coroutine

It may also blocks to wait if the result is not
ready yet

Possible output:

Hi from function!
Hi from coroutine!

3

Combining coroutines

Consider two coroutines:

task<int> produce_value() {
 int value = ...; // Complex stuff
 co_return value;
}

task<int> process_value() {
 int init = ...; // Complex stuff
 task<int> tsk = produce_value();
 int value = co_await tsk;
 int result = ...; // Complex stuff
 co_return result;
}

What happens in process_value :

1. Does initialization

2. Spawns coroutine

3. Pauses itself

And tell tsk it's waiting for it

Later, possibly in another thread:

1. produce_value finishes executing, passes its result
in tsk

2. tsk sees process_value is waiting for it

3. tsk resumes process_value

4. process_value retrieves the result in tsk (
value = co_await ...)

5. process_value does its complex stuff

4

Coroutines as user space threads

A thread can be in these states:

Running: a CPU core is currently walking through its instructions

Paused: no CPU should be working on it

Ready: a CPU core can pick it up, if it has capacity

Observe: a coroutine can be in these exact same states!

Difference:

A CPU core switching from one thread to the other is expensive

Must go through the operating system kernel and thread scheduler

A CPU core switching from one coroutine to the other is cheap

Just save the state of the current one, load the state of the next, and go

Coroutines basically realize a cooperative thread scheduler purely in user space

This is much lighter weight than the preemptive kernel scheduler

5

Use cases for task-like coroutines

Scaling event-driven systems: large number of small jobs, does not saturate CPU capacity

Think of a web server

You could launch a thread for each client

Threads are resource heavy, this doesn't scale

Launch a coroutine for each client instead. You can have millions of coroutines at the same time without
issue.

Efficiently scheduling parallel work: medium number of heavy jobs, spins all cores at 100%

Think of a game engine

Many tasks, many of them parallel-decomposable:

Process sound: convolution reverb, mixing...

Update physics engine: space partitioning, detect collisions...

Update graphics engine: occlusion culling, issue render commands...

You can reframe the tasks as coroutines that co_await each other

Set a thread-pool to eagerly resume 'ready' coroutines from a global queue

6

Generators

Coroutines also help lazy-generating sequences:

generator<int> fibonacci() {
 int a = 1, b = 1;
 while (true) {
 co_yield a;
 std::tie(a, b) = std::tuple(b, a + b);
 }
}

generator<int> g = fibonacci()
auto fib_n = begin(g); // Iterator!
for (int i=0; i<100; ++i) {
 std::cout << *fib_n << std::endl;
 ++fib_n;
}

co_yield :

Pauses the coroutine like co_await

Creates a result like co_return

Not waiting for another coro, manually resumed

generator<T> :

It's a range: has begin() and end() methods

These return iterators to the values in the range

The range is made up of the values co_yield ed

Lifecycle generators:

1. Spawn the coroutine: start in a running state

2. Hits co_yield , produces a value and pauses

3. Dereference iterator: extract the latest
co_yield 'ed value

4. Increment iterator: resume coroutine until next
co_yield

7

Use cases for generators

Express procedurally generated infinite sequences (e.g. random numbers)

Iterate over data structures: may be more convenient to express it as a coroutine than directly with
iterator classes

Awaitable generators:

Instead of dereferencing the iterator, you co_await it

Your web-client's requests can be expressed as a generator

8

Remarks

This was a very brief introduction, there is a lot more to it:

How to implement task<T> and generator<T> yourself

How to implement a coroutine scheduler

Theory of operation of threads

Theory of operation of stackful and stackless coroutines

To use coroutines in practice, you need a library that implements task<T> and generator<T>

You can write your own

You can use:

cppcoro: https://github.com/lewissbaker/cppcoro

libcoro: https://github.com/jbaldwin/libcoro

9

https://github.com/lewissbaker/cppcoro
https://github.com/jbaldwin/libcoro

