+&@_ CSCS S
\' ' Centro Svizzero di Calcolo Scientifico E'" Z U r I Ch

\' Swiss National Supercomputing Centre

Advanced C++ Course

Future C++
CSCS

C++ standardization process

e C++ standardized under the ISO in "Working

Group 21" (WGZ].) 3—stage pipe]ine LO/IECJTCl(lT) (F)DIS Approval
5 C iS WG 14 SC 22 (Pgmg Langs) CD & PDTS Approval
e From proposal to standardization: Internal Approval
o "Study groups" evaluate proposals, discuss 3 - Wording & Consistency
merits, improve design ot | Group 2 - Design & Target (IS/TS)

o "(Library) Evolution Working Group" evaluates o - >~
. R Concurrenc Modules Networkin
how well the design fits C++ as a whole y g

SG5 SG6

Tx. Memory Numerics

SG12 SG14

SG7 SG9 5G10 Game, Embedded,

o "Core/Library Working Group" evaluates AN IGCSE MG Rl BEYUSIM | 1 - Domain Specific
. SG15 SG16 SG17 SG18 SG19 '"VESt'gat'.O" &
WO rd | ng Tooling Text EWG Incubator B LEWG Incubator liMachine Learning Incubation
: . . i $G20 5G21 5G22
o Full committee vote with "National Bodies" (NB) cducatin | Contracts | /e Lason | safety & securty

Completed, inactive

1¥,® CSCs 1 ETHzurich

C++ standardization process

e More information

ISO/IECJTC 1 (1)

e Draft of the standard available at 3-stage pipeline -

https://eel.is/c++draft

e Proposals available at https://www.open-
std.org/jtcl/sc22/wg21/docs/papers/

o https://wg21.link/PO000 takes you to the latest

Core Wording

ABI Review
Group

Direction
Group

Core Evolution

WG21 — C++ Committee (full plenary)
Group

SC 22 (Pgmg Langs)

Lib Wording

Lib Evolution

revision of proposal POOOO -

Concurrency

SG2
Modules

Nez

Networking

SG5

Tx. Memory

SG12
U. Behavior

SG9

Ranges

SG7

Reflection

SG10

Feature Test

SG15 SG16
Tooling Text

SG17
EWG Incubator

SG18

LEWG Incubator

SG20

Education

SG21

Contracts

SG22

C/C++ Liaison

SG23
Safety & Security

SG6

Numerics

SG14

Game, Embedded,
Low Latency

SG19

Machine Learning

\3\0‘0 CSCS 5

(F)DIS Approval

CD & PDTS Approval

Internal Approval

3 - Wording & Consistency

2 - Design & Target (IS/TS)

1 - Domain Specific
Investigation &
Incubation

Completed, inactive

ETH:zurich

https://isocpp.org/std
https://eel.is/c++draft
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
https://wg21.link/P0000

Moving to newer standards

e C++23 recently finalized and compiler support is also getting finalized, yet many are still stuck with C++17

e Easier than ever to use newer compilers, but even with system compilers getting C++20 support is now
relatively easy

e Biggest obstacle to upgrading is NVIDIA compilers

o From experience: if you can separate your CUDA kernels from your regular source files you will have an
easier time moving to newer standards

e Sticking with GCC and clang will get you furthest (honorable mention to MSVC which has been improving
rapidly lately)

e Following best practices with Cl helps make upgrades as painless as possible
o Testing with warnings (and errors) enabled with multiple compilers helps catch problems early

o Excellent resource for checking compiler support: https://en.cppreference.com/w/cpp/compiler support

\?\o:-o CSCS 3 ETHziirich

https://en.cppreference.com/w/cpp/compiler_support

What's new in C++?

e The past sessions have covered advanced C++ topics up to C++23
e Features that didn't fit previous sessions, but are good to know about:
o modules
o std::format and std::print
© std::expected
e Features useful for HPC that are targeted for C++26:
© std::simd
© std::execution

© std::linalg + std::mdspan

\:o} CSCS 4 ETHziirich

Modules

e Problem: header includes error prone and slow
o "Stateful" headers possible with macros

o Parsing transitive headers may be very expensive (https://github.com/s9w/cpp-lit): simply enabling
C++20 may increase compilation times!

e C++ modules (C++20) moves away from textual inclusion to a model where exports are explicit, macros
don't leak, and build times aren't insane (though they can still be insane because of templates)

e GCC 14, clang 16, and CMake ~3.26 are starting to have usable (but experimental) support for modules
o https://godbolt.org/z/von5MfK7T

o CMake 3.28 (unreleased) will have non-experimental support for modules:
https://gitlab.kitware.com/cmake/cmake/-/issues/18355

e The modules std and std.compat were added in C++23

import std;
auto main() -> int { std::println("Hello, world!"); }

\:o:o CSCS 5 ETHziirich

https://github.com/s9w/cpp-lit
https://godbolt.org/z/von5MfK7T
https://gitlab.kitware.com/cmake/cmake/-/issues/18355

std::format and std::print

e C's printf : convenient but not type safe

e C++'sjostreams: clunky and stateful but type safe

e What if we could have both (and go a bit further)?
o C++20 introduced std::format
o C++23 introduced std::print and std::println
o https://godbolt.org/z/MgKPxzzxM

std: :print(
"Hello {}!\npadding: {:#68x}\nalignment: {:>30}\nprecision: {:.2f}\n",
"Bjarne", 42, "short", std::numbers::pi_v<float>);

o user-generated static_assert messages: https://wg21.link/p2/741

e What to do until C++23 is well supported?

o Use fmt

\g; CSCS 4 ETHziirich

https://godbolt.org/z/MqKPxzzxM
https://wg21.link/p2741
https://fmt.dev/

std: :expected

e C++ lacks a language level multi-return type
o store either result in case of success

o or store error information in case of failure

Workarounds
o Cstyleflags: int fun(args..., Result& r) e exceptions
o need to construct Result type before o undesired (inversion of control flow)
(assignable) o disabled for certain hardware/applications
o cumbersome and error-prone to check o expensive to unwind
o limited error information o error-prone (forget to check)

o not composable
® std::optional

o is value-or-nothing (no error information)

\:o} CSCS y ETHziirich

std: :expected<T, E>:Overview

e [ntroduced in C++23

e similar to a union/ std::variant behind the scenes

e no dynamic memory allocation

e value-or-error semantics (never empty)

e T isthe value_type which is the expected type

e E isthe error_type whichis the unexpected type

e explicit access of result (no implicit converison)

e access of value when result is unexpected: throw exception

e access of error when result is expected: throw exception

\:o} CSCS g ETHziirich

std: :expected<T, E>:Basic Usage

Construction (by callee)

Operations (by caller)

auto foo(std::string const& s) noexcept -> std::expected<double, std::string> {
// wrap C-style parser for example
double r;
if (parse(s, &r))
return r;

else
return std::unexpected(std::string{"could not parse"});

if (auto r =foo(s); r.has_value())
std::cout << r.value() << "\n";
else
std::cout << r.error() << "\n";

e interface familiar from std::optional

® Use std::unexpected<E> to represent unexpected
value (E == std::string here)

N A g CSCS

o explicit access of value/error

e value_or(U other) akinto std

::optional

ETH:zurich

std: :expected<T, E>:Monadic Operations (map, bind)

e named after a concept from category theory (familiar from haskell)
e increase composability (functional programming style)
o signature expected<T1,E1>::0p(F&& f) -> expected<T2, E2>

o apply function f on the current result (pass *this as argumentto f)

F: T1 -> T2 F: T1 -> expected<T2, E1>
result return type
G: E1 -> E2 G: E1 -> expected<T1, E2>

expected<T2,

expected transform(F&&) and_then(F&&) E1>
expected<T1,

unexpected | transform_error(G&&) or_else(G&&) E2>

e extended example at https://godbolt.org/z/dEGYabfGW

\3\010 CSCS 10 ETHziirich

https://godbolt.org/z/dEGYa6fGW

std: :simd

e SIMD: single instruction multiple data

e Modern processors: wide registers with machine instructions acting on the multiple data
e SSE,SSE2, AVX, AVX2, AVX512,SVE,SVE2

e Auto-vectorization sometimes not good enough

e Requires hardware-specific code, usually compiler intrinsics

// AVX: Compute 2.612
// Arbor's implementation, https://github.com/arbor-sim/arbor/blob/master/arbor/include/arbor/simd/avx.hpp
__m256d exp2int(__m128i n) {

n = _mm_slli_epi32(n, 20);

n = _mm_add_epi32(n, _mm_setl1_epi32(1023<<20));

auto nl = _mm_shuffle_epi32(n, 0x50);
auto nh = _mm_shuffle_epi32(n, ©Oxfa);
_mm256_insertf128_si256(_mm256_castsi128_si256(nl), nh, 1);

return _mm256_castps_pd(
_mm256_blend_ps(_mm256_set1_ps(9),
_mm256_castsi256_ps(nhnl),6xaa));

}

+3
\\0? CSGS 11

ETHZUrich

e Many libraries for abstracting hardware specifics
o vir::stdx::simd
o Agner Fog’s Vector Types
o EV.E.
o xsimd
o V¢
o highway
o kokkos

30
\\0‘0 CSCS

e Standardization efforts for C++26
o std::experimental::simd (data parallelism TS v2)

o std::(experimental::)simd implementation from
Intel in progress (permutation operations and
support for complex numbers)

o std::simd prototyping
https://github.com/mattkretz/simd-prototyping/

o https://www.open-
std.org/jtcl/sc22/wg21/docs/papers/2023/p280
3r0.pdf

12 ETH:zurich

https://github.com/mattkretz/simd-prototyping/
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2803r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2803r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2803r0.pdf

std: :simd

e in std::experimental (gcc:sincevl1l) for now

® std::simd<T, Abi>

o behaves mostly like object of type T but operates on multiple values (element-wise)

o Abi (template-template parameter) determines vector width (size) and ABI (i.e. how parameters are
passed to functions)

m std::simd_abi::native<T>: most efficient for given hardware

" std::simd_abi::fixed_size<T, N> :user-defined width

Scalar

SIMD

double f(double x) {
return x * 2.;

}

std::simd<double> f(std::simd<double> x) {
return x * 2.;

}

P
\\0‘0 CSCS

13

ETH:zurich

std: :simd : Loop parallelization

void f(std::vector<float>& data) {
using V = std::native_simd<float>;
std::size_t i = 0

v(&data[i], std::element_aligned);

v = std::sin(v);

v.copy_to(&data[i], std::element_aligned);
}
for (; i < data.size(); ++i) {

data[i] = std::sin(data[i]);
}

for (; 1 + V::size() <= data.size(); i += V::size()) {

o efforts tointegrate simd with parallel algorithms (PO350)

select simd type/Abi

loop in V::size() increments
load data (pay attention to alignment
memory_alignment_v<V>)
store data

You often need an “epilogue”

[1(auto x)
return std::sin(x);

}) s

std::transform(std: :execution::simd, data.begin(), data.end(), data.begin(),

30
\\0‘0 CSCS

14

ETH:zurich

std: :simd : Generic enough?

template<typename T> e works, but:
T f(T x) { . .

return x * 2. o be careful with constants (2.f insted of 2.)
J o what about conditionals?

template <typename T> e std::where
T (T x) { o _)
sl el B 5, %) Be 2 o takes a std::simd_mask<T, Abi> as first
return x; argument (data-parallel type with the element
} type bool)
o returns a

std: :where_expression<simd_mask, simd> :
abstracts the notion of selected elements

o works for scalars, as well

\g; CSCS 15 ETHziirich

std: :simd : Conclusions

e SIMD width is selected at compile time (Abi)
e Speed-up is often a factor of size() , but may be less, depending on hardware details
e Requires refactoring of code (loops, elimination of conditionals, introduction of where expressions)

e PO350 may help for simple cases

\:o} CSCS 16 ETHziirich

std: :execution

e Until now: parallel algorithms (CPU only)
e Third party vendor solutions:

o Thrust (CPU, NVIDIA, AMD)

o nvhpc (NVIDIA)

o SYCL (CPU, NVIDIA, AMD)
e Other third party libraries:

o Kokkos

o Alpaka

e std::execution aims to put generic building blocks in C++ standard

\3\0:0 CSCS 17 ETHziirich

std: :execution hello world

using namespace std::execution;
scheduler auto sch = thread_pool.scheduler();

sender auto begin = schedule(sch);

sender auto hi = then(begin, []1{
std: :cout << "Hello world! Have an int.";
return 13;

1),
sender auto add_42 = then(hi, [](int arg) { return arg + 42; });

auto [i] = this_thread::sync_wait(add_42).value();

\:‘" CSCS 18

ETH:zurich

std: :execution

e Performance portable building blocks
e Sendersrepresent work

o Schedulersrepresent where work runs
e Algorithms represent what work to do

e Reference implementation can already be used today: stdexec

e CSCS developing pika: builds functionality on top of std::execution
e Targeted for C++26

e Proposal: https://wg21.link/p2300
o stdexec is available on compiler explorer: https://godbolt.org/z/T3MghPGex

\go CSCS 19 ETHziirich

https://github.com/NVIDIA/stdexec
https://github.com/pika-org/pika
https://wg21.link/p2300
https://godbolt.org/z/T3MqhPGex

std: :execution : not only for asynchrony

e Schedulers (executors) finally get us a step closer to heterogeneous execution of parallel algorithms

e Blocking overloads of parallel algorithms much simpler to reason about
e Proposal: https://wg21.link/p2500

std::for_each(
std::execute_on(scheduler, std::execution::par),
begin(data),
end(data),
f);

\3\0:0 CSCS 20 ETHziirich

https://wg21.link/p2500

std::linalg

e Decades of existing practice in BLAS

e No more ZGERC, instead matrix_rank_1_update_c(std::par, x, y, A)

e Works with std::mdspan as inputs

e Execution policies for parallelization

e GPU support dependent on std::execution support for parallel algorithms
e Targeted for C++26

e Only covers BLAS, not LAPACK

e Proposal: https://wg21.link/p16/3

\3\0:0 CSCS 21 ETHziirich

https://wg21.link/p1673

std::1linalg cholesky

template<in-matrix InMat, class Triangle, in-vector InVec, out-vector OutVec>
void cholesky_solve(InMat A, Triangle t, InVec b, OutVec x)
{
using namespace std::linalg;
if constexpr (std::is_same_v<Triangle, upper_triangle_t>) {
// Solve Ax=b where A = U"T U
// Solve UAT ¢ = b, using x to store c.
triangular_matrix_vector_solve(transposed(A), opposite_triangle(t), explicit_diagonal, b, x);
// Solve U x = ¢, overwriting x with result.
triangular_matrix_vector_solve(A, t, explicit_diagonal, x);
} else { /*% ... */ }
}
@@ CSCS 29 ETH:zurich

@

std: :execution and std::1linalg use case: DLA-Future

e DLA-Future: distributed linear algebra built on what is currently being standardized
o https://github.com/eth-cscs/DLA-Future

e std::execution for
o asynchrony (senders)
o heterogeneous execution (CPU, CUDA, HIP)

o currently covered by stdexec and pika

e std::linalg for
o BLAS and LAPACK

o currently covered by cuBLAS, rocBLAS, cuSOLVER, rocSOLVER, and DLA-Future because DLA-Future
needs asynchronous versions of std::linalg

e networking

o currently covered by MPI and pika

\:o} CSCS 93 ETHziirich

https://github.com/eth-cscs/DLA-Future
https://github.com/NVIDIA/stdexec
https://github.com/pika-org/pika
https://github.com/pika-org/pika

std: :execution and std::linalg use case: DLA-Future

using Memory = CPU;
auto sched = cpu_scheduler;

dlaf::Matrix<T, CPU> m1;
dlaf::Matrix<T, CPU> m2;

dlaf::comm::recv_tile(ij);
ml.read(ij);
m2.readwrite(ij);

sender auto a
sender auto b
sender auto c

sender auto s = std::execution::when_all(a, b, c) |

on(cpu_scheduler, dlaf::general_multiplication) |

std::execution::then([]() { std::print("matrix-matrix multiplication done\n"); });
std::this_thread::sync_wait(s);

\3\0‘0 CSCS 24 ETH:zurich

Thank you!

<& .
1¥,® CSCs 25 ETH:zurich

