
Advanced C++ Course
Future C++

CSCS



C++ standardization process

C++ standardized under the ISO in "Working
Group 21" (WG21)

C is WG14

From proposal to standardization:

"Study groups" evaluate proposals, discuss
merits, improve design

"(Library) Evolution Working Group" evaluates
how well the design fits C++ as a whole

"Core/Library Working Group" evaluates
wording

Full committee vote with "National Bodies" (NB)

1



C++ standardization process

More information

Draft of the standard available at
https://eel.is/c++draft

Proposals available at https://www.open-
std.org/jtc1/sc22/wg21/docs/papers/

https://wg21.link/P0000 takes you to the latest
revision of proposal P0000

2

https://isocpp.org/std
https://eel.is/c++draft
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/
https://wg21.link/P0000


Moving to newer standards

C++23 recently finalized and compiler support is also getting finalized, yet many are still stuck with C++17

Easier than ever to use newer compilers, but even with system compilers getting C++20 support is now
relatively easy

Biggest obstacle to upgrading is NVIDIA compilers

From experience: if you can separate your CUDA kernels from your regular source files you will have an
easier time moving to newer standards

Sticking with GCC and clang will get you furthest (honorable mention to MSVC which has been improving
rapidly lately)

Following best practices with CI helps make upgrades as painless as possible

Testing with warnings (and errors) enabled with multiple compilers helps catch problems early

Excellent resource for checking compiler support: https://en.cppreference.com/w/cpp/compiler_support

3

https://en.cppreference.com/w/cpp/compiler_support


What's new in C++?

The past sessions have covered advanced C++ topics up to C++23

Features that didn't fit previous sessions, but are good to know about:

modules

std::format  and std::print

std::expected

Features useful for HPC that are targeted for C++26:

std::simd

std::execution

std::linalg  + std::mdspan

4



Modules

Problem: header includes error prone and slow

"Stateful" headers possible with macros

Parsing transitive headers may be very expensive (https://github.com/s9w/cpp-lit): simply enabling
C++20 may increase compilation times!

C++ modules (C++20) moves away from textual inclusion to a model where exports are explicit, macros
don't leak, and build times aren't insane (though they can still be insane because of templates)

GCC 14, clang 16, and CMake ~3.26 are starting to have usable (but experimental) support for modules

https://godbolt.org/z/von5MfK7T

CMake 3.28 (unreleased) will have non-experimental support for modules:
https://gitlab.kitware.com/cmake/cmake/-/issues/18355

The modules std  and std.compat  were added in C++23

import std;
auto main() -> int { std::println("Hello, world!"); }

5

https://github.com/s9w/cpp-lit
https://godbolt.org/z/von5MfK7T
https://gitlab.kitware.com/cmake/cmake/-/issues/18355


std::format  and std::print

C's printf : convenient but not type safe

C++'s iostreams: clunky and stateful but type safe

What if we could have both (and go a bit further)?

C++20 introduced std::format

C++23 introduced std::print  and std::println

https://godbolt.org/z/MqKPxzzxM

std::print(
    "Hello {}!\npadding: {:#08x}\nalignment: {:>30}\nprecision: {:.2f}\n",
    "Bjarne", 42, "short", std::numbers::pi_v<float>);

user-generated static_assert  messages: https://wg21.link/p2741

What to do until C++23 is well supported?

Use fmt

6

https://godbolt.org/z/MqKPxzzxM
https://wg21.link/p2741
https://fmt.dev/


std::expected

C++ lacks a language level multi-return type

store either result in case of success

or store error information in case of failure

Workarounds

C style flags: int fun(args..., Result& r)

need to construct Result  type before
(assignable)

cumbersome and error-prone to check

limited error information

not composable

std::optional

is value-or-nothing (no error information)

exceptions

undesired (inversion of control flow)

disabled for certain hardware/applications

expensive to unwind

error-prone (forget to check)

7



std::expected<T, E> : Overview

Introduced in C++23

similar to a union / std::variant  behind the scenes

no dynamic memory allocation

value-or-error semantics (never empty)

T  is the value_type  which is the expected type

E  is the error_type  which is the unexpected type

explicit access of result (no implicit converison)

access of value when result is unexpected: throw exception

access of error when result is expected: throw exception

8



std::expected<T, E> : Basic Usage
Construction (by callee)

auto foo(std::string const& s) noexcept -> std::expected<double, std::string> {
    // wrap C-style parser for example
    double r;
    if (parse(s, &r))
        return r;
    else
        return std::unexpected(std::string{"could not parse"});
}

interface familiar from std::optional

use std::unexpected<E>  to represent unexpected
value ( E  == std::string  here)

Operations (by caller)

if (auto r =foo(s); r.has_value())
    std::cout << r.value() << "\n";
else
    std::cout << r.error() << "\n";

explicit access of value/error

value_or(U other)  akin to std::optional

9



std::expected<T, E> : Monadic Operations (map, bind)

named after a concept from category theory (familiar from haskell)

increase composability (functional programming style)

signature expected<T1,E1>::op(F&& f) -> expected<T2, E2>

apply function f  on the current result (pass *this  as argument to f )

result
F: T1 -> T2

G: E1 -> E2

F: T1 -> expected<T2, E1>

G: E1 -> expected<T1, E2>
return type

expected transform(F&&) and_then(F&&)
expected<T2,
E1>

unexpected transform_error(G&&) or_else(G&&)
expected<T1,
E2>

extended example at https://godbolt.org/z/dEGYa6fGW

10

https://godbolt.org/z/dEGYa6fGW


std::simd

SIMD: single instruction multiple data

Modern processors: wide registers with machine instructions acting on the multiple data

SSE, SSE2, AVX, AVX2, AVX512, SVE, SVE2

Auto-vectorization sometimes not good enough

Requires hardware-specific code, usually compiler intrinsics

// AVX: Compute 2.0^2
// Arbor's implementation, https://github.com/arbor-sim/arbor/blob/master/arbor/include/arbor/simd/avx.hpp
__m256d exp2int(__m128i n) {
    n = _mm_slli_epi32(n, 20);
    n = _mm_add_epi32(n, _mm_set1_epi32(1023<<20));

    auto nl = _mm_shuffle_epi32(n, 0x50);
    auto nh = _mm_shuffle_epi32(n, 0xfa);
    _mm256_insertf128_si256(_mm256_castsi128_si256(nl), nh, 1);

    return _mm256_castps_pd(
        _mm256_blend_ps(_mm256_set1_ps(0),
        _mm256_castsi256_ps(nhnl),0xaa));
}

11



Many libraries for abstracting hardware specifics

vir::stdx::simd

Agner Fog’s Vector Types

E.V.E.

xsimd

Vc

highway

kokkos

Standardization efforts for C++26

std::experimental::simd (data parallelism TS v2)

std::(experimental::)simd implementation from
Intel in progress (permutation operations and
support for complex numbers)

std::simd prototyping
https://github.com/mattkretz/simd-prototyping/

https://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2023/p280
3r0.pdf

12

https://github.com/mattkretz/simd-prototyping/
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2803r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2803r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2803r0.pdf


std::simd

in std::experimental  (gcc: since v11) for now

std::simd<T, Abi>

behaves mostly like object of type T  but operates on multiple values (element-wise)

Abi (template-template parameter) determines vector width ( size ) and ABI (i.e. how parameters are
passed to functions)

std::simd_abi::native<T> : most efficient for given hardware

std::simd_abi::fixed_size<T, N> : user-defined width

Scalar

double f(double x) {
    return x * 2.;
}

SIMD

std::simd<double> f(std::simd<double> x) {
    return x * 2.;
}

13



std::simd : Loop parallelization

void f(std::vector<float>& data) {
    using V = std::native_simd<float>;
    std::size_t i = 0
    for (; i + V::size() <= data.size(); i += V::size()) {
        v(&data[i], std::element_aligned);
        v = std::sin(v);
        v.copy_to(&data[i], std::element_aligned);
    }
    for (; i < data.size(); ++i) {
        data[i] = std::sin(data[i]);
    }
}

select simd type/Abi

loop in V::size()  increments
load data (pay attention to alignment

memory_alignment_v<V> )
store data

You often need an “epilogue”

efforts to integrate simd with parallel algorithms (P0350)

std::transform(std::execution::simd, data.begin(), data.end(), data.begin(),
    [](auto x) {
        return std::sin(x);
    });

14



std::simd : Generic enough?

template<typename T>
T f(T x) {
    return x * 2.;
}

works, but:

be careful with constants ( 2.f  insted of 2. )

what about conditionals?

template <typename T>
T f(T x) {
    std::where(x > 0.f, x) *= 2.f;
    return x;
}

std::where

takes a std::simd_mask<T, Abi>  as first
argument (data-parallel type with the element
type bool)

returns a
std::where_expression<simd_mask, simd> :

abstracts the notion of selected elements

works for scalars, as well

15



std::simd : Conclusions

SIMD width is selected at compile time (Abi)

Speed-up is often a factor of size()  , but may be less, depending on hardware details

Requires refactoring of code (loops, elimination of conditionals, introduction of where  expressions)

P0350 may help for simple cases

16



std::execution

Until now: parallel algorithms (CPU only)

Third party vendor solutions:

Thrust (CPU, NVIDIA, AMD)

nvhpc (NVIDIA)

SYCL (CPU, NVIDIA, AMD)

Other third party libraries:

Kokkos

Alpaka

std::execution  aims to put generic building blocks in C++ standard

17



std::execution  hello world

using namespace std::execution;

scheduler auto sch = thread_pool.scheduler();

sender auto begin = schedule(sch);
sender auto hi = then(begin, []{
    std::cout << "Hello world! Have an int.";
    return 13;
});
sender auto add_42 = then(hi, [](int arg) { return arg + 42; });

auto [i] = this_thread::sync_wait(add_42).value();

18



std::execution

Performance portable building blocks

Senders represent work

Schedulers represent where work runs

Algorithms represent what work to do

Reference implementation can already be used today: stdexec

CSCS developing pika: builds functionality on top of std::execution

Targeted for C++26

Proposal: https://wg21.link/p2300

stdexec is available on compiler explorer: https://godbolt.org/z/T3MqhPGex

19

https://github.com/NVIDIA/stdexec
https://github.com/pika-org/pika
https://wg21.link/p2300
https://godbolt.org/z/T3MqhPGex


std::execution : not only for asynchrony

Schedulers (executors) finally get us a step closer to heterogeneous execution of parallel algorithms

Blocking overloads of parallel algorithms much simpler to reason about

Proposal: https://wg21.link/p2500

std::for_each(
    std::execute_on(scheduler, std::execution::par),
    begin(data),
    end(data),
    f);

20

https://wg21.link/p2500


std::linalg

Decades of existing practice in BLAS

No more ZGERC, instead matrix_rank_1_update_c(std::par, x, y, A)

Works with std::mdspan  as inputs

Execution policies for parallelization

GPU support dependent on std::execution  support for parallel algorithms

Targeted for C++26

Only covers BLAS, not LAPACK

Proposal: https://wg21.link/p1673

21

https://wg21.link/p1673


std::linalg  cholesky

template<in-matrix InMat, class Triangle, in-vector InVec, out-vector OutVec>
void cholesky_solve(InMat A, Triangle t, InVec b, OutVec x)
{
  using namespace std::linalg;
  if constexpr (std::is_same_v<Triangle, upper_triangle_t>) {
    // Solve Ax=b where A = U^T U
    // Solve U^T c = b, using x to store c.
    triangular_matrix_vector_solve(transposed(A), opposite_triangle(t), explicit_diagonal, b, x);
    // Solve U x = c, overwriting x with result.
    triangular_matrix_vector_solve(A, t, explicit_diagonal, x);
  } else { /* ... */ }
}

22



std::execution  and std::linalg  use case: DLA-Future

DLA-Future: distributed linear algebra built on what is currently being standardized

https://github.com/eth-cscs/DLA-Future

std::execution  for

asynchrony (senders)

heterogeneous execution (CPU, CUDA, HIP)

currently covered by stdexec and pika

std::linalg  for

BLAS and LAPACK

currently covered by cuBLAS, rocBLAS, cuSOLVER, rocSOLVER, and DLA-Future because DLA-Future
needs asynchronous versions of std::linalg

networking

currently covered by MPI and pika

23

https://github.com/eth-cscs/DLA-Future
https://github.com/NVIDIA/stdexec
https://github.com/pika-org/pika
https://github.com/pika-org/pika


std::execution  and std::linalg  use case: DLA-Future

using Memory = CPU;
auto sched = cpu_scheduler;

dlaf::Matrix<T, CPU> m1;
dlaf::Matrix<T, CPU> m2;

sender auto a = dlaf::comm::recv_tile(ij);
sender auto b = m1.read(ij);
sender auto c = m2.readwrite(ij);

sender auto s = std::execution::when_all(a, b, c) |
    on(cpu_scheduler, dlaf::general_multiplication) |
    std::execution::then([]() { std::print("matrix-matrix multiplication done\n"); });
std::this_thread::sync_wait(s);

24



Thank you!

25


