+&@_ CSCS S
\' ' Centro Svizzero di Calcolo Scientifico E'H Z U r I Ch

\' Swiss National Supercomputing Centre

Coroutines in a bit more than a nutshell

Péter Kardos

Suspendable functions
Threads

Coroutines

std::future<int> compute(std::future<int> input) {
// Start function on thread A
int value = input.get(); // Suspend thread A
// Resume function on thread A
return std::async([=]{ return f(value); });

task<int> compute(task<int> input) {
// Start coroutine on thread A
int value = co_await input; // Suspend coroutine
// Resume coroutine on thread B
co_return f(value);

e Suspendable functions are not new

e Threads do get suspended in the middle of a function call

e They do pick up where they left off once resumed by the OS

e Coroutines do the same thing essentially, but have different characteristics

N A g CSCS

ETH:zurich

Coroutines in C++

How to use C++ coroutines?

1. Decide you need coroutines

2.Sit down and code your own coroutine library
3. Write thousands of lines of code

4. Debug concurrency errors

5.777

6. Profit

Why so complicated?

e You can't simply use coroutines out of the box
e Downside: task<T> and the like have to be implemented by you

e Upside: task<T> and the like can be implemented in any way you want it

\:o:o CSCS 5 ETHziirich

Compiler support for coroutines
Coroutine body: Under the hood:

// Definition:
task<int> my_first_corof

// Definition:

task<int> my_first_coro() { typename task<int>::promise_type& promise
// Body here. ..) |
co_return 1; try i
co_await promise.initial_suspend();
} // Body here. ..
promise.return_value(1);
// Call b (o
: : . catc e
task<int> t = my_first_coro(); promise.unhandled_exception();
}
o . final_suspend:
[Th|$ IS hOW your Code |OOkS ||ke co_await promise.final_suspend()
delete &promise;
e You think about this when using a coroutine library |’
// Call

auto promise = new typename task<int>::promise_type;
task<int> t = promise->get_return_object();
my_first_coro(*promise);

e This is how the compiler interacts with your code

e You think about this when implementing task<T>

1¥,® CSCs 3 ETHzurich

Making task<T> and promise<T>

e From the under-the-hood view, we can figure out the layout of both

e These are the minimum methods they have to implement

The task<T>

The promise<T>

template <class T>
class task {
public:

using promise_type

}

promise<T>

N A g CSCS

template <class T>

struct promise {
task<T> get_return_object();
auto initial_suspend() const noexcept;
auto final_suspend() const noexcept;
void return_value(T value) noexcept;
void unhandled_exception() noexcept;

ETH:zurich

Defining promise<T>::get_return_object

e This method returns the task<T> object

e Thereturned task should most likely know about the promise

e Thus we'll pass the this pointer to the task

template <class I>
task<T> promise<T>::get_return_object() noexcept {
return task<T>(this);

}

\3\0:0 cscs 5 ETHziirich

Defining promise<T>::initial_suspend

e Coroutines can essentially start suspended or start running

e The behavior is determined by promise::initial_suspend

e Remember how each coroutine body starts with co_await promise.initial_suspend() ?
o This can either suspend or continue the coroutine

e In our case, we want to always suspend the coroutine after starting:

template <class T>
auto promise<T>::initial_suspend() const noexcept {
return std::suspend_always{};

}

e std::suspend_always is a helper class

e |t can be co_await ed -- we'll soon see what that means

\g; CSCS 4 ETHziirich

Defining promise<T>::final_suspend

e \When coroutines finish they have two options:
o Suspend the coroutine: it's final state can be inspected
o Continue the coroutine: this also destroys the coroutine
o The behavior is determined by promise::final_suspend
o This happens immediately after the co_return statement
e We want our coroutines to always suspend on finish
e This is because we want to retrieve the results
e |f the coroutine is destroyed, we can't get the results anymore
o Unless the coroutine forwards it before it's destroyed

o But we won't take that approach for simplicity

template <class T>
auto promise<T>::final_suspend() const noexcept ({
return std::suspend_always{};

}

\3\0:0 CSCS y ETHziirich

Defining promise<T>::return_value

e The statement co_return X;
e Translates into promise.return_value(X);
e Essentially return_value is our chance to store the value returned by the coroutine

o We'll save it into a field of the promise object

template <class TI>
auto promise<T>::return_value(T value) const noexcept {
m_result = std::move(value);

}

For this, we need to modify the promise too by adding the m_result field:

template <class T>
struct promise {

T get_result() noexcept { return std::move(m_result.value); }
std::optional<T> m_result;

¥% cscs .

ETH:zurich

Defining promise<T>::unhandled_exception

e This is called when instead of co_return, we exit the scope because of an exception
e We can call std::current_exception to store the exception
e Then later use std::rethrow_exception when someone tries to retrieve the results

e But for now, we'll just terminate the application:

template <class TI>
auto promise<T>::unhandled_exception() const noexcept {
std::terminate();

}

\?} CSCS o ETHziirich

Summary of the implementation so far (1)

We can now write this and it compiles:

task<int> my_first_coro() {
co_return 1;

}

Despite all the work it still has a few shortcomings:

e The coroutine body never runs
e The coroutine stack never gets deleted - it leaks memory
e No way to retrieve the results
o We cannot co_await this coroutine yet
e No way to synchronize the results

o We cannot obtain the results from a regular function either

\go CSCS 10 ETHziirich

Getting the results by synchronization

Let's add a get method to the task, similarly to std::future:

template <class T>
T task<T>::get() {

// Logic here...
}

Regarding the logic:

e The coroutine is initially suspended
e The first thing we want to do is resume it
o Otherwise it will never co_return us the result
e The second is toretrieve the result using the promise<T>::get_result we wrote earlier

e Finally, we pass the result on to the caller

\3\010 CSCS 11 ETHziirich

1. Resuming the coroutine: the coroutine handle

For this, we will need the so-called coroutine handle:

template <class T>
auto promise<T>::handle() noexcept {
return std::coroutine_handle<promise>::from_promise(*this);

}

What is this handle anyway?

e When you create a coroutine (i.e. my_first_coro()), its promise and local variables get allocated on the
heap

e This is exactly the same as a function's stack frame

o Only that RBP and RSP now point to an arbitrary address

o |nstead of SUB RBP, $s now you have MOV RBP, S$coro_frame
e This way the coroutine's stack frame can outlive its caller

e The std::coroutine_handle is just a pointer to the coroutine's stack frame

\:o} CSCS 19 ETHziirich

1. Resuming the coroutine: resume method

Now that we have access to the coroutine handle, we can use it to resume a suspended coroutine:

template <class T>

T task<T>::get() noexcept {
m_promise->handle().resume();
// I0D0: get result
// I0D0: forward result to caller

e WARNING: resuming a running coroutine is undefined behavior!
e We don't have to worry about this:

o The task instance is the sole owner of its promise instance (i.e. task is not CopyConstructible)

o The coroutine is always suspended initially

o The coroutine is only ever resumed in get

\:o} CSCS 13 ETHziirich

2. & 3. Getting the result

The restis very simple:

template <class T>

T task<T>::get() noexcept {
m_promise->handle().resume();
return m_promise->get_result();

\3\0:0 CSCS 14 ETHziirich

Summary of the implementation so far (2)

Now we can write a coroutine as well as get its result:

task<int> my_first_coro() {
co_return 1;

}

int main() {
auto result = my_first_coro();
const auto value = result.get();
std::cout << value << std::endl;

However:

o |t's still leaking memory

e \We still cannot co_await the task

\:0:0 CSCS 15 ETHziirich

The co_await expression
What you write: Under the hood:

task<int> my_second_coro() { task<T> my_second_coro() {

const int value = co_await my_first_coro(); auto&& task = my_first_coro();

co_return value; auto&& awaitable = task.operator co_await();
} bool suspend = awaitable.await_ready();

if (suspend) {

. - - // Magic: coroutine is now suspended.
e NOTE: you can only use co_await inside a A N S T

coroutine, thus my_second_coro is also a coroutine awaitable.await_suspend(handle);
// Magic: control returned to caller

// of handle.resume().
}
// Magic: someone called handle.resume() again.
// Coroutine continues here.
int value = awaitable.await_resume();

1¥,® CSCs 16 ETHzurich

Making task<T> awaitable

From the under the hood picture, we can figure out the necessary methods:

e task<T> must have an operator co_await . Let's take an educated guess that this method returns an
awaitable object that needs to know about the promise<T> too:

template <class TI>
awaitable<T> task<T>::operator co_await() noexcept {

return awaitable<T>(m_promise);

}

e According to the co_await expression's expanded view, awaitable<T> must have this declaration:

template <class TI>
struct awaitable {
promise<T>* m_promise;
bool await_ready() const noexcept;
void await_suspend(std::coroutine_handle<>) const noexcept;

T await_resume() const noexcept;

1¥,® CSCs 17 ETHzurich

Defining awaitable<T>::await_ready

The meaning of this function ("is ready?"):

e |f await_ready returns true:
o The enclosing coroutine is continued without suspension
o await_resume is called immediately after

e |f await_ready returns false:
o The enclosing coroutine is suspended immediately

o await_suspend is called immediately after suspension

We'll never suspend coroutines, we'll resume the awaited ones instead:

template <class TI>

bool awaitable<T>::await_ready() const noexcept {
m_promise->handle().resume();
return true;

\3\0:0 CSCS 18 ETHziirich

Defining awaitable<T>::await_suspend

The meaning of this function (“on suspend” / "do suspend?"):

e Called when await_ready returns false ==> for us, it'll never be called

e |ts argument is the enclosing coroutine: the one that's co_await -ing the task<T> that returned this

awaitable<T>

o We could save the enclosing coroutine and resume it at a later time
e |ts return value may be

o void : in this case, the enclosing coroutine stays suspended

o bool : in this case, even though await_ready caused the enclosing coro to suspend, we can decide to
rather resume it right away by returning false

o std::coroutine_handle<void> : in this case, the enclosing coroutine stays suspended, but we resume will
be called on the returned handle.

template <class I>
void awaitable<T>::await_suspend(std::coroutine_handle<>) const noexcept {}

\3\0:0 CSCS 19 ETHziirich

Defining awaitable<T>::await_resume

The meaning of this function (“on resume"):

e Called when the enclosing coroutine is resumed
o This can happen immediately when await_ready returns true
o Or asynchronously in the future

e Provides the type and value of the co_await expression

Our implementation returns the result of the task<T> this awaitable<T> belongs to:

template <class T>
T awaitable<T>::await_resume() const noexcept {
return m_promise->get_result();

}

\3\0:0 CSCS 20 ETHziirich

Patching that memory leak

e The coroutine is always suspended when it has finished
e |t's safe to destroy a suspended coroutine

o Destroying a running coroutine is certainly undefined behavior
o Let's take care of it in the destructor of task<T>

e \We can use the coroutine handle

template <class TI>
task<T>::~task() {
m_promise->handle().destroy();

}

Now the coroutine's stack frame on the heap is properly freed.

\:o} CSCS 21 ETHziirich

Summary of the implementation so far (3)

Now we can also co_await coroutines:

task<int> my_first_coro() {
co_return 1;

}

task<int> my_second_coro() {
const int value = co_await my_first_coro();
co_return value;

}

int main() {
auto result = my_second_coro();
const auto value = result.get();
std::cout << value << std::endl;

e Wow, it's useless!

o We've just reimplemented plain old functions in a complicated way

1¥,® CSCs 22 ETHzurich

Going async

e The issue: all our coroutines execute synchronously
e We need to change the implementation of await_ready and await_suspend
e Combining coroutines with other event sources:
o We can offload computation of a coroutine to another thread and co_await or get() it elsewhere

o We can make a coroutine resume only once an |/O operation is finished

o We can make a coroutine resume on other operations such as DB queries, HTTP requests, etc.
e MOST IMPORTANT POINT:
o This only changes the implementation of task<T> and similar primitives

o The syntax to use them stays the exact same

= Which is currently the same syntax as regular functions
» Thus our async code will look like the usual sync code (not bad!)

o This is the main motivation behind coroutines

\:o:o CSCS 93 ETHziirich

Syntax of async code

Future-then pattern

Coroutine pattern

std::future<bowl&> make_dough(bowl& b) {
return get_flour()

.then([&b](ingredient flour) {
b.add(flour);
return get_water();

})

.then([&b](ingredient water){
b.add(water);
return get_milk();

1)

.then([&b](ingredient milk){
b.add(milk);
return get_eggs();

})

.then([&b](ingredient eggs){
b.add(eggs);
return b;

1)

e This looks pretty disastrous

e You don't want your pancakes to be full of bugs

P
\\0‘0 CSCS

24

task<bowl&> make_dough(bowl& b) {
b.add(co_await get_flour());
b.add(co_await get_water());
b.add(co_await get_milk());
b.add(co_await get_eggs());
co_return b;

e This looks pretty
o Basically the same as blocking code

e Much more likely to be free of bugs

ETH:zurich

Creating a coroutine library

We have seen:
® task<T>
But there is also:

® generator<T>

® stream<T>

® shared_task<T>
® mutex

® event

e fence

® semaphore

e You're essentially free to implement whatever you want

\3\0:0 CSCS ot ETHziirich

Example: networking with coroutines (1)

class socket { e class socket can be an awaitable
struct awaitable {
bool await_ready() { o No need for a coroutine promise
return poll(m_fd, 0);
}
void await_suspend(std::coroutine_handle<> handle) { ® network_scheduler haS d baCkgrOund thread that
network_scheduler::enqueue(m_fd, handle); does the p0|||ng
}
std::vector<std::byte> await_resume() { ., .
Ceturn recv(mfd) . e co_await ing a socket simply adds the socket to
} } the polled sockets
public: 1 1
S SO S SR e [f datais available, the network_scheduler calls
auto operator co_await() { resume on the coroutine handle associated with
return awaitable(m_fd);
) that socket
private:
int m_fd;

}

1¥,® CSCs 26 ETHzurich

Example: networking with coroutines (2)

Why coroutines?

e Reducing synchronization overhead
o Imagine 1000s of connections
o The kernel has to switch between 1000s of thread: lot of processing
o Coroutines on a thread-pool hardly use CPU cycles in comparison
e Reducing resource allocation overhead
o Each thread has a stack and kernel data structures allocated
o Creating and destroying threads is expensive
o Coroutines are lightweight and you can have millions of them alive at the same time

e Your syntax is still pretty much the same as single-threaded blocking code

\?\o:-o CSCS 7 ETHziirich

Mini case study: game engine job system (1)

Everything a game engine does to update the game can be broken down into smaller tasks:

e Render scene
o Frustum culling (batch & parallelize)

o Rendering (batch & parallelize)

o Planar reflections (batch & parallelize)
o Shadow maps (batch & parallelize)
o Post processing
e Timestep physics
o Space partitioning
o Collision detection
o Forces & integration
e Sound...
e Ul...

e Scripts...

\?\o}o CSCS)8 ETHziirich

Mini case study: game engine job system (2)

e Game engines have strong performance requirements:
o High throughput
o Low latency
o Both are very important
e Throughput: needs to spread work across CPU cores
e Latency: needs to keep synchronization overhead small even when CPU cores are not saturated
e Solution: job system
o Often implemented with fibers (stackful coroutines)
o The tasks to update the frame are organized into a DAG
o The tasks are converted to fibers

o And scheduled on a thread pool

\?\o}o CSCS 26 ETHziirich

Mini case study: game engine job system (3)

With C++ coroutines, you could write it like this:

task<void> update_frame() {
auto task_scripts = launch(exec_scripts(), thread_pool);
auto task_graphics = launch(render_scene(), thread_pool);
auto task_physics = launch(update_physics(), thread_pool);
auto task_sound = launch(mix_sound(), thread_pool);
auto task_ui = launch(update_ui(), thread_pool);
co_await task_scripts;
co_await task_graphics;
co_await task_physics;
co_awailt task_sound;
co_await task_ui;
co_return;

e The code looks linear, but is fully parallelized
e The task DAG is now the same as the call graph: you don't need explicit job objects and graphs

e Low overhead: you can split jobs as much as you can to help parallelization

1¥,® CSCs 30 ETHzurich

Performance comparison with threads

e Threads are expensive: e Coroutines are cheap:
o They have 1 MiB stack allocated each o They are stackless
o Synchonization requires OS kernel calls o Synchronization happens in userspace: uses
o Suspension involves the OS scheduler cheap atomics or spinlocks
o Creation and destruction is expensive © Suspension is just saving some registers

o Creation and destruction is just a new/delete

e Number of threads my PC can finish in a second:
o Linux: 54k/s
o Windows: 53k/s
e Number of coroutines my PC can finish in a second:
o Linux: 163M/s
o Windows: 27M/s

\?\o:-o CSCS 31 ETHziirich

Notes on performance comparison

o Apples to apples?

o You cou
o You cou
o You cou
o |t woulc

o You cou

d use a thread pool without coroutines

d use a static task graph (coroutines are always dynamic!)

d use TBB or a similar high performance library
be as fast as coroutines, maybe faster

d also add better memory allocators for the coroutine frames

e WWhat we measured:

o Cost of thread setup vs cost of coroutine setup

o |n that sense it's a fair comparison

e Conclusion:

o You have to do a lot more work to get threads up to speed

o Coroutines stay ergonomic despite their high performance

30
\\0‘0 CSCS

32

ETH:zurich

Remarks

e As usual, coroutines are difficult, like everything else in C++
e As usual, coroutines are powerful, like... many things in C++
e You need a good coroutine library to make use of the feature

e Coroutines can substantially improve the code quality and performance of certain applications

\?\o}o CSCS 33 ETHziirich

