
Coroutines in a bit more than a nutshell
Péter Kardos

Suspendable functions
Threads

std::future<int> compute(std::future<int> input) {
 // Start function on thread A
 int value = input.get(); // Suspend thread A
 // Resume function on thread A
 return std::async([=]{ return f(value); });
}

Coroutines

task<int> compute(task<int> input) {
 // Start coroutine on thread A
 int value = co_await input; // Suspend coroutine
 // Resume coroutine on thread B
 co_return f(value);
}

Suspendable functions are not new

Threads do get suspended in the middle of a function call

They do pick up where they left off once resumed by the OS

Coroutines do the same thing essentially, but have different characteristics

1

Coroutines in C++
How to use C++ coroutines?

1. Decide you need coroutines

2. Sit down and code your own coroutine library

3. Write thousands of lines of code

4. Debug concurrency errors

5. ???

6. Profit

Why so complicated?

You can't simply use coroutines out of the box

Downside: task<T> and the like have to be implemented by you

Upside: task<T> and the like can be implemented in any way you want it

2

Compiler support for coroutines
Coroutine body:

// Definition:
task<int> my_first_coro() {
 // Body here...
 co_return 1;
}

// Call
task<int> t = my_first_coro();

This is how your code looks like

You think about this when using a coroutine library

Under the hood:

// Definition:
task<int> my_first_coro(
 typename task<int>::promise_type& promise
) {
 try {
 co_await promise.initial_suspend();
 // Body here...
 promise.return_value(1);
 }
 catch (...) {
 promise.unhandled_exception();
 }
final_suspend:
 co_await promise.final_suspend()
 delete &promise;
}

// Call
auto promise = new typename task<int>::promise_type;
task<int> t = promise->get_return_object();
my_first_coro(*promise);

This is how the compiler interacts with your code

You think about this when implementing task<T>

3

Making task<T> and promise<T>

From the under-the-hood view, we can figure out the layout of both

These are the minimum methods they have to implement

The task<T>

template <class T>
class task {
public:
 using promise_type = promise<T>
}

The promise<T>

template <class T>
struct promise {
 task<T> get_return_object();
 auto initial_suspend() const noexcept;
 auto final_suspend() const noexcept;
 void return_value(T value) noexcept;
 void unhandled_exception() noexcept;
}

4

Defining promise<T>::get_return_object

This method returns the task<T> object

The returned task should most likely know about the promise

Thus we'll pass the this pointer to the task

template <class T>
task<T> promise<T>::get_return_object() noexcept {
 return task<T>(this);
}

5

Defining promise<T>::initial_suspend

Coroutines can essentially start suspended or start running

The behavior is determined by promise::initial_suspend

Remember how each coroutine body starts with co_await promise.initial_suspend() ?

This can either suspend or continue the coroutine

In our case, we want to always suspend the coroutine after starting:

template <class T>
auto promise<T>::initial_suspend() const noexcept {
 return std::suspend_always{};
}

std::suspend_always is a helper class

It can be co_await ed -- we'll soon see what that means

6

Defining promise<T>::final_suspend

When coroutines finish they have two options:

Suspend the coroutine: it's final state can be inspected

Continue the coroutine: this also destroys the coroutine

The behavior is determined by promise::final_suspend

This happens immediately after the co_return statement

We want our coroutines to always suspend on finish

This is because we want to retrieve the results

If the coroutine is destroyed, we can't get the results anymore

Unless the coroutine forwards it before it's destroyed

But we won't take that approach for simplicity

template <class T>
auto promise<T>::final_suspend() const noexcept {
 return std::suspend_always{};
}

7

Defining promise<T>::return_value

The statement co_return X;

Translates into promise.return_value(X);

Essentially return_value is our chance to store the value returned by the coroutine

We'll save it into a field of the promise object

template <class T>
auto promise<T>::return_value(T value) const noexcept {
 m_result = std::move(value);
}

For this, we need to modify the promise too by adding the m_result field:

template <class T>
struct promise {
 ...
 T get_result() noexcept { return std::move(m_result.value); }
 std::optional<T> m_result;
}

8

Defining promise<T>::unhandled_exception

This is called when instead of co_return , we exit the scope because of an exception

We can call std::current_exception to store the exception

Then later use std::rethrow_exception when someone tries to retrieve the results

But for now, we'll just terminate the application:

template <class T>
auto promise<T>::unhandled_exception() const noexcept {
 std::terminate();
}

9

Summary of the implementation so far (1)

We can now write this and it compiles:

task<int> my_first_coro() {
 co_return 1;
}

Despite all the work it still has a few shortcomings:

The coroutine body never runs

The coroutine stack never gets deleted - it leaks memory

No way to retrieve the results

We cannot co_await this coroutine yet

No way to synchronize the results

We cannot obtain the results from a regular function either

10

Getting the results by synchronization

Let's add a get method to the task, similarly to std::future :

template <class T>
T task<T>::get() {
 // Logic here...
}

Regarding the logic:

The coroutine is initially suspended

The first thing we want to do is resume it

Otherwise it will never co_return us the result

The second is to retrieve the result using the promise<T>::get_result we wrote earlier

Finally, we pass the result on to the caller

11

1. Resuming the coroutine: the coroutine handle

For this, we will need the so-called coroutine handle:

template <class T>
auto promise<T>::handle() noexcept {
 return std::coroutine_handle<promise>::from_promise(*this);
}

What is this handle anyway?

When you create a coroutine (i.e. my_first_coro()), its promise and local variables get allocated on the
heap

This is exactly the same as a function's stack frame

Only that RBP and RSP now point to an arbitrary address

Instead of SUB RBP, $s now you have MOV RBP, $coro_frame

This way the coroutine's stack frame can outlive its caller

The std::coroutine_handle is just a pointer to the coroutine's stack frame

12

1. Resuming the coroutine: resume method

Now that we have access to the coroutine handle, we can use it to resume a suspended coroutine:

template <class T>
T task<T>::get() noexcept {
 m_promise->handle().resume();
 // TODO: get result
 // TODO: forward result to caller
}

WARNING: resuming a running coroutine is undefined behavior!

We don't have to worry about this:

The task instance is the sole owner of its promise instance (i.e. task is not CopyConstructible)

The coroutine is always suspended initially

The coroutine is only ever resumed in get

13

2. & 3. Getting the result

The rest is very simple:

template <class T>
T task<T>::get() noexcept {
 m_promise->handle().resume();
 return m_promise->get_result();
}

14

Summary of the implementation so far (2)

Now we can write a coroutine as well as get its result:

task<int> my_first_coro() {
 co_return 1;
}

int main() {
 auto result = my_first_coro();
 const auto value = result.get();
 std::cout << value << std::endl;
}

However:

It's still leaking memory

We still cannot co_await the task

15

The co_await expression
What you write:

task<int> my_second_coro() {
 const int value = co_await my_first_coro();
 co_return value;
}

NOTE: you can only use co_await inside a
coroutine, thus my_second_coro is also a coroutine

Under the hood:

task<T> my_second_coro() {
 auto&& task = my_first_coro();
 auto&& awaitable = task.operator co_await();
 bool suspend = awaitable.await_ready();
 if (suspend) {
 // Magic: coroutine is now suspended.
 // await_suspend is still called.
 awaitable.await_suspend(handle);
 // Magic: control returned to caller
 // of handle.resume().
 }
 // Magic: someone called handle.resume() again.
 // Coroutine continues here.
 int value = awaitable.await_resume();
}

16

Making task<T> awaitable

From the under the hood picture, we can figure out the necessary methods:

task<T> must have an operator co_await . Let's take an educated guess that this method returns an
awaitable object that needs to know about the promise<T> too:

template <class T>
awaitable<T> task<T>::operator co_await() noexcept {
 return awaitable<T>(m_promise);
}

According to the co_await expression's expanded view, awaitable<T> must have this declaration:

template <class T>
struct awaitable {
 promise<T>* m_promise;
 bool await_ready() const noexcept;
 void await_suspend(std::coroutine_handle<>) const noexcept;
 T await_resume() const noexcept;
};

17

Defining awaitable<T>::await_ready

The meaning of this function ("is ready?"):

If await_ready returns true :

The enclosing coroutine is continued without suspension

await_resume is called immediately after

If await_ready returns false :

The enclosing coroutine is suspended immediately

await_suspend is called immediately after suspension

We'll never suspend coroutines, we'll resume the awaited ones instead:

template <class T>
bool awaitable<T>::await_ready() const noexcept {
 m_promise->handle().resume();
 return true;
}

18

Defining awaitable<T>::await_suspend

The meaning of this function ("on suspend" / "do suspend?"):

Called when await_ready returns false ==> for us, it'll never be called

Its argument is the enclosing coroutine: the one that's co_await -ing the task<T> that returned this
awaitable<T>

We could save the enclosing coroutine and resume it at a later time

Its return value may be

void : in this case, the enclosing coroutine stays suspended

bool : in this case, even though await_ready caused the enclosing coro to suspend, we can decide to
rather resume it right away by returning false

std::coroutine_handle<void> : in this case, the enclosing coroutine stays suspended, but we resume will
be called on the returned handle.

template <class T>
void awaitable<T>::await_suspend(std::coroutine_handle<>) const noexcept {}

19

Defining awaitable<T>::await_resume

The meaning of this function ("on resume"):

Called when the enclosing coroutine is resumed

This can happen immediately when await_ready returns true

Or asynchronously in the future

Provides the type and value of the co_await expression

Our implementation returns the result of the task<T> this awaitable<T> belongs to:

template <class T>
T awaitable<T>::await_resume() const noexcept {
 return m_promise->get_result();
}

20

Patching that memory leak

The coroutine is always suspended when it has finished

It's safe to destroy a suspended coroutine

Destroying a running coroutine is certainly undefined behavior

Let's take care of it in the destructor of task<T>

We can use the coroutine handle

template <class T>
task<T>::~task() {
 m_promise->handle().destroy();
}

Now the coroutine's stack frame on the heap is properly freed.

21

Summary of the implementation so far (3)

Now we can also co_await coroutines:

task<int> my_first_coro() {
 co_return 1;
}

task<int> my_second_coro() {
 const int value = co_await my_first_coro();
 co_return value;
}

int main() {
 auto result = my_second_coro();
 const auto value = result.get();
 std::cout << value << std::endl;
}

Wow, it's useless!

We've just reimplemented plain old functions in a complicated way

22

Going async

The issue: all our coroutines execute synchronously

We need to change the implementation of await_ready and await_suspend

Combining coroutines with other event sources:

We can offload computation of a coroutine to another thread and co_await or get() it elsewhere

We can make a coroutine resume only once an I/O operation is finished

We can make a coroutine resume on other operations such as DB queries, HTTP requests, etc.

MOST IMPORTANT POINT:

This only changes the implementation of task<T> and similar primitives

The syntax to use them stays the exact same

Which is currently the same syntax as regular functions

Thus our async code will look like the usual sync code (not bad!)

This is the main motivation behind coroutines

23

Syntax of async code
Future-then pattern

std::future<bowl&> make_dough(bowl& b) {
 return get_flour()
 .then([&b](ingredient flour){
 b.add(flour);
 return get_water();
 })
 .then([&b](ingredient water){
 b.add(water);
 return get_milk();
 })
 .then([&b](ingredient milk){
 b.add(milk);
 return get_eggs();
 })
 .then([&b](ingredient eggs){
 b.add(eggs);
 return b;
 });
}

This looks pretty disastrous

You don't want your pancakes to be full of bugs

Coroutine pattern

task<bowl&> make_dough(bowl& b) {
 b.add(co_await get_flour());
 b.add(co_await get_water());
 b.add(co_await get_milk());
 b.add(co_await get_eggs());
 co_return b;
}

This looks pretty

Basically the same as blocking code

Much more likely to be free of bugs

24

Creating a coroutine library

We have seen:

task<T>

But there is also:

generator<T>

stream<T>

shared_task<T>

mutex

event

fence

semaphore

...

You're essentially free to implement whatever you want

25

Example: networking with coroutines (1)
class socket {
 struct awaitable {
 bool await_ready() {
 return poll(m_fd, 0);
 }
 void await_suspend(std::coroutine_handle<> handle) {
 network_scheduler::enqueue(m_fd, handle);
 }
 std::vector<std::byte> await_resume() {
 return recv(m_fd);
 }
 }
public:
 void send(std::span<const std::byte> data);
 auto operator co_await() {
 return awaitable(m_fd);
 }
private:
 int m_fd;
}

class socket can be an awaitable

No need for a coroutine promise

network_scheduler has a background thread that
does the polling

co_await ing a socket simply adds the socket to
the polled sockets

If data is available, the network_scheduler calls
resume on the coroutine handle associated with

that socket

26

Example: networking with coroutines (2)

Why coroutines?

Reducing synchronization overhead

Imagine 1000s of connections

The kernel has to switch between 1000s of thread: lot of processing

Coroutines on a thread-pool hardly use CPU cycles in comparison

Reducing resource allocation overhead

Each thread has a stack and kernel data structures allocated

Creating and destroying threads is expensive

Coroutines are lightweight and you can have millions of them alive at the same time

Your syntax is still pretty much the same as single-threaded blocking code

27

Mini case study: game engine job system (1)

Everything a game engine does to update the game can be broken down into smaller tasks:

Render scene

Frustum culling (batch & parallelize)

Rendering (batch & parallelize)

Planar reflections (batch & parallelize)

Shadow maps (batch & parallelize)

Post processing

Timestep physics

Space partitioning

Collision detection

Forces & integration

Sound...

UI...

Scripts...
28

Mini case study: game engine job system (2)

Game engines have strong performance requirements:

High throughput

Low latency

Both are very important

Throughput: needs to spread work across CPU cores

Latency: needs to keep synchronization overhead small even when CPU cores are not saturated

Solution: job system

Often implemented with fibers (stackful coroutines)

The tasks to update the frame are organized into a DAG

The tasks are converted to fibers

And scheduled on a thread pool

29

Mini case study: game engine job system (3)

With C++ coroutines, you could write it like this:

task<void> update_frame() {
 auto task_scripts = launch(exec_scripts(), thread_pool);
 auto task_graphics = launch(render_scene(), thread_pool);
 auto task_physics = launch(update_physics(), thread_pool);
 auto task_sound = launch(mix_sound(), thread_pool);
 auto task_ui = launch(update_ui(), thread_pool);
 co_await task_scripts;
 co_await task_graphics;
 co_await task_physics;
 co_await task_sound;
 co_await task_ui;
 co_return;
}

The code looks linear, but is fully parallelized

The task DAG is now the same as the call graph: you don't need explicit job objects and graphs

Low overhead: you can split jobs as much as you can to help parallelization

30

Performance comparison with threads

Threads are expensive:

They have 1 MiB stack allocated each

Synchonization requires OS kernel calls

Suspension involves the OS scheduler

Creation and destruction is expensive

Coroutines are cheap:

They are stackless

Synchronization happens in userspace: uses
cheap atomics or spinlocks

Suspension is just saving some registers

Creation and destruction is just a new/delete

Number of threads my PC can finish in a second:

Linux: 54k/s

Windows: 53k/s

Number of coroutines my PC can finish in a second:

Linux: 163M/s

Windows: 27M/s

31

Notes on performance comparison

Apples to apples?

You could use a thread pool without coroutines

You could use a static task graph (coroutines are always dynamic!)

You could use TBB or a similar high performance library

It would be as fast as coroutines, maybe faster

You could also add better memory allocators for the coroutine frames

What we measured:

Cost of thread setup vs cost of coroutine setup

In that sense it's a fair comparison

Conclusion:

You have to do a lot more work to get threads up to speed

Coroutines stay ergonomic despite their high performance

32

Remarks

As usual, coroutines are difficult, like everything else in C++

As usual, coroutines are powerful, like... many things in C++

You need a good coroutine library to make use of the feature

Coroutines can substantially improve the code quality and performance of certain applications

33

